It is simply defined as `f64` across every platform right now.
A use case hasn't been presented for a `float` type defined as the
highest precision floating point type implemented in hardware on the
platform. Performance-wise, using the smallest precision correct for the
use case greatly saves on cache space and allows for fitting more
numbers into SSE/AVX registers.
If there was a use case, this could be implemented as simply a type
alias or a struct thanks to `#[cfg(...)]`.
Closes#6592
The mailing list thread, for reference:
https://mail.mozilla.org/pipermail/rust-dev/2013-July/004632.html
It was a little ambiguous before how explicitl positional parameters and
implicit positional parameters intermingled, and this clarifies how the two
intermingle. This also updates a little bit of documentation/code examples
elsewhere as well.
It was a little ambiguous before how explicitl positional parameters and
implicit positional parameters intermingled, and this clarifies how the two
intermingle. This also updates a little bit of documentation/code examples
elsewhere as well.
Creates a wrapper around a mutable reference to the iterator.
This is useful to allow applying iterator adaptors while still
retaining ownership of the original iterator value.
Example::
let mut xs = range(0, 10);
// sum the first five values
let partial_sum = xs.by_ref().take(5).fold(0, |a, b| a + b);
assert!(partial_sum == 10);
// xs.next() is now `5`
assert!(xs.next() == Some(5));
std::vec: Sane implementations for connect_vec and concat_vec
Avoid unnecessary copying of subvectors, and calculate the needed space
beforehand. These implementations are simple but better than the
previous.
Also only implement it once, for all `Vector<T>` using:
impl<'self, T: Clone, V: Vector<T>> VectorVector<T> for &'self [V]
Closes#9581
Avoid unnecessary copying of subvectors, and calculate the needed space
beforehand. These implementations are simple but better than the
previous.
Also only implement it once, for all `Vector<T>` using:
impl<'self, T: Clone, V: Vector<T>> VectorVector<T> for &'self [V]
performance improved according to the bench test:
before
test vec::bench::concat ... bench: 74818 ns/iter (+/- 408)
test vec::bench::connect ... bench: 87066 ns/iter (+/- 376)
after
test vec::bench::concat ... bench: 17724 ns/iter (+/- 126)
test vec::bench::connect ... bench: 18353 ns/iter (+/- 691)
Closes#9581
std::vec: Use a valid value as lifetime dummy in iterator
The current implementation uses `&v[0]` for the lifetime struct field,
but that is a dangling pointer for iterators derived from zero-length
slices.
Example:
let v: [int, ..0] = []; println!("{:?}", v.iter())
std::vec::VecIterator<,int>{ptr: (0x7f3768626100 as *()), end: (0x7f3768626100 as *()), lifetime: &139875951207128}
To replace this parameter, use a field of type `Option<&'self ()>`
that is simply initialized with `None`, but still allows the iterator to
have a lifetime parameter.
This now makes it unsafe to save the pointer returned by .with_c_str
as that pointer now may be pointing at a stack allocated array.
I arbitrarily chose 32 bytes as the length of the stack vector, and
so it might not be the most optimal size.
before:
test c_str::bench::bench_with_c_str_long ... bench: 539 ns/iter (+/- 91)
test c_str::bench::bench_with_c_str_medium ... bench: 97 ns/iter (+/- 2)
test c_str::bench::bench_with_c_str_short ... bench: 70 ns/iter (+/- 5)
after:
test c_str::bench::bench_with_c_str_long ... bench: 542 ns/iter (+/- 13)
test c_str::bench::bench_with_c_str_medium ... bench: 53 ns/iter (+/- 6)
test c_str::bench::bench_with_c_str_short ... bench: 19 ns/iter (+/- 0)
The current implementation uses `&v[0]` for the lifetime struct field,
but that is a dangling pointer for iterators derived from zero-length
slices.
Example:
let v: [int, ..0] = []; println!("{:?}", v.iter())
std::vec::VecIterator<,int>{ptr: (0x7f3768626100 as *()), end: (0x7f3768626100 as *()), lifetime: &139875951207128}
To replace this parameter, use a field of type `Option<&'self ()>`
that is simply initialized with `None`, but still allows the iterator to
have a lifetime parameter.
This lifts various restrictions on the runtime, for example the character limit
when logging a message. Right now the old debug!-style macros still involve
allocating (because they use fmt! syntax), but the new debug2! macros don't
involve allocating at all (unless the formatter for a type requires allocation.
This also includes a fix for yielding from single-threaded schedulers where the scheduler would stop working before its work queue was empty. Fixes the deadlocks that this patch had previously.
Fix#7752.
~~(The glob API is a little funky; I tried to make a small test for it, which I'll add to the end of this description, and its not clear whether globfree is supposed to free solely the structure allocated by glob itself, or if it is going to try to free more than that.)~~ (The previous note was a user-error: I was misusing the CString API.)
Anyway, this seems to work in terms of calling errfunc where expected.)
```rust
#[allow(unused_imports)];
use std::libc::types::os::arch::c95::{c_char, c_int, size_t};
use std::libc::funcs::posix01::glob;
use std::libc::types::os::common::posix01::glob_t;
use std::libc::consts::os::posix01::{GLOB_APPEND, GLOB_DOOFFS, GLOB_ERR,
GLOB_MARK, GLOB_NOCHECK, GLOB_NOSORT,
GLOB_NOESCAPE, GLOB_NOSPACE,
GLOB_ABORTED, GLOB_NOMATCH};
use std::ptr;
use std::c_str;
#[fixed_stack_segment]
fn main() {
let mut g = glob_t {
gl_pathc: 0, // size_t,
__unused1: 0, // c_int,
gl_offs: 2, // size_t,
__unused2: 0, // c_int,
gl_pathv: ptr::null(), // **c_char,
__unused3: ptr::null(), // *c_void,
__unused4: ptr::null(), // *c_void,
__unused5: ptr::null(), // *c_void,
__unused6: ptr::null(), // *c_void,
__unused7: ptr::null(), // *c_void,
__unused8: ptr::null(), // *c_void,
};
extern "C" fn errfunc(_epath: *c_char, _errno: int) -> int {
println!("errfunc called");
return 0;
}
struct Reduced { pathc: size_t, offs: size_t, pathv: **c_char, }
impl Reduced {
fn from(g: &glob_t) -> Reduced {
Reduced {pathc: g.gl_pathc, offs: g.gl_offs, pathv: g.gl_pathv}
}
}
do ("*.rs/*").with_c_str |pat| {
println!("calling glob");
unsafe { glob::glob(pat, GLOB_DOOFFS, errfunc, &mut g); }
println!("After glob call");
println!("g: {:?}", Reduced::from(&g));
for i in range(0, g.gl_pathc as int) {
unsafe {
let p : **c_char = ptr::offset(g.gl_pathv, g.gl_offs as int + i);
let x = c_str::CString::new(*p, false);
match x.as_str() {
Some(s) => {
println!("gl_pathc[{:d}]: {:?}", i, s);
}
None => {
println!("gl_pathc[{:d}]: unvalid", i);
}
}
}
}
}
println!("calling globfree on g: {:?}", g);
unsafe { glob::globfree(&mut g); }
println!("after globfree call");
}
```
If there's no TLS key just yet, then there's nothing to unsafely borrow, so
continue returning None. This prevents causing the runtime to abort itself when
logging before the runtime is fully initialized.
Closes#9487
r? @brson
Moved OwnedStr doc comments from impl to trait.
Added a few #[inline] hints.
The doc comment changes make the source a bit harder to read, as
documentation and implementation no longer live right next to each
other. But this way they at least appear in the docs.
This lifts various restrictions on the runtime, for example the character limit
when logging a message. Right now the old debug!-style macros still involve
allocating (because they use fmt! syntax), but the new debug2! macros don't
involve allocating at all (unless the formatter for a type requires allocation.
If there's no TLS key just yet, then there's nothing to unsafely borrow, so
continue returning None. This prevents causing the runtime to abort itself when
logging before the runtime is fully initialized.
Closes#9487
Previously, any package would match any other package ID when searching
using the rust_path_hack, so long as the directory had one or more crate
files in it. Now, rustpkg checks that the parent directory matches the
package ID.
Closes#9273
In "/src/libstd/char.rs", there are function and method definitions for `is_lowercase()`, `is_uppercase()`, `is_whitespace()`, etc. However, there was no function or method for control characters, so I added the `is_control()` function and method definitions along with documentation and tests. Running `./configure && make check` shows that all tests for `is_control()` pass.
Progress on #7981
This doesn't completely close the issue because `struct A;` is still allowed, and it's a much larger change to disallow that. I'm also not entirely sure that we want to disallow that. Regardless, punting that discussion to the issue instead.
Also, documentation & general clean-up:
- remove `gen_char_from`: better served by `sample` or `choose`.
- `gen_bytes` generalised to `gen_vec`.
- `gen_int_range`/`gen_uint_range` merged into `gen_integer_range` and
made to be properly uniformly distributed. Fixes#8644.
Minor adjustments to other functions.
This large commit implements and `html` output option for rustdoc_ng. The
executable has been altered to be invoked as "rustdoc_ng html <crate>" and
it will dump everything into the local "doc" directory. JSON can still be
generated by changing 'html' to 'json'.
This also fixes a number of bugs in rustdoc_ng relating to comment stripping,
along with some other various issues that I found along the way.
The `make doc` command has been altered to generate the new documentation into
the `doc/ng/$(CRATE)` directories.
This is for consistency in naming conventions.
- ``std::num::Float::NaN()`` is changed to ``nan()``;
- ``std::num::Float.is_NaN()`` is changed to ``is_nan()``; and
- ``std::num::strconv::NumStrConv::NaN()`` is changed to ``nan()``.
Fixes#9319.
This is the second of two parts of #8991, now possible as a new snapshot
has been made. (The first part implemented the unreachable!() macro; it
was #8992, 6b7b8f2682.)
``std::util::unreachable()`` is removed summarily; any code which used
it should now use the ``unreachable!()`` macro.
Closes#9312.
Closes#8991.
This is for consistency in naming conventions.
- ``std::num::Float::NaN()`` is changed to ``nan()``;
- ``std::num::Float.is_NaN()`` is changed to ``is_nan()``; and
- ``std::num::strconv::NumStrConv::NaN()`` is changed to ``nan()``.
Fixes#9319.
This is my first contribution, so please point out anything that I may have missed.
I consulted IRC and settled on `match () { ... }` for most of the replacements.
Some of the functions could be converted to rust, but the functions dealing with
signals were moved to rust_builtin.cpp instead (no reason to keep the original
file around for one function).
Closes#2674
Because less C++ is better C++!
This is the second of two parts of #8991, now possible as a new snapshot
has been made. (The first part implemented the unreachable!() macro; it
was #8992, 6b7b8f2682.)
``std::util::unreachable()`` is removed summarily; any code which used
it should now use the ``unreachable!()`` macro.
Closes#9312.
Closes#8991.
Some of the functions could be converted to rust, but the functions dealing with
signals were moved to rust_builtin.cpp instead (no reason to keep the original
file around for one function).
Closes#2674
This is a re-landing of #8645, except that the bindings are *not* being used to
power std::run just yet. Instead, this adds the bindings as standalone bindings
inside the rt::io::process module.
I made one major change from before, having to do with how pipes are
created/bound. It's much clearer now when you can read/write to a pipe, as
there's an explicit difference (different types) between an unbound and a bound
pipe. The process configuration now takes unbound pipes (and consumes ownership
of them), and will return corresponding pipe structures back if spawning is
successful (otherwise everything is destroyed normally).
This patch fixes some errors of MIPS target, however, MIPS C ABI is still broken. I will send another PR to fix the problem.
Because MIPS target has no "generic" CPU name, I add --target-cpu and --target-feature to RUST_FLAGS. In order to workaround the "compact frame descriptions incompatible with DWARF2 .eh_frame" problem, the linker I used is CXX but not CC.
std: Remove {float,f64,f32}::from_str in favor of from_str in the prelude
Like issue #9209, remove float::{from_str, from_str_radix} in favor of
the two corresponding traits. The same for modules f64 and f32.
New usage is:
from_str::<float>("1.2e34")
Like issue #9209, remove float::{from_str, from_str_radix} in favor of
the two corresponding traits. The same for modules f64 and f32.
New usage is
from_str::<float>("1.2e34")
A quick rundown:
- added `file::{readdir, stat, mkdir, rmdir}`
- Added access-constrained versions of `FileStream`; `FileReader` and `FileWriter` respectively
- big rework in `uv::file` .. most actions are by-val-self methods on `FsRequest`; `FileDescriptor` has gone the way of the dinosaurs
- playing nice w/ homing IO (I just copied ecr's work, hehe), etc
- added `FileInfo` trait, with an impl for `Path`
- wrapper for file-specific actions, with the file path always implied by self's value
- has the means to create `FileReader` & `FileWriter` (this isn't exposed in the top-level free function API)
- has "safe" wrappers for `stat()` that won't throw in the event of non-existence/error (in this case, I mean `is_file` and `exists`)
- actions should fail if done on non-regular-files, as appropriate
- added `DirectoryInfo` trait, with an impl for `Path`
- pretty much ditto above, but for directories
- added `readdir` (!!) to iterate over entries in a dir as a `~[Path]` (this was *brutal* to get working)
...<del>and lots of other stuff</del>not really. Do your worst!
This doesn't close any bugs as the goal is to convert the parameter to by-value, but this is a step towards being able to make guarantees about `&T` pointers (where T is Freeze) to LLVM.
std: remove unneeded field from RequestData struct
std: rt::uv::file - map us_fs_stat & start refactoring calls into FsRequest
std: stubbing out stat calls from the top-down into uvio
std: us_fs_* operations are now by-val self methods on FsRequest
std: post-rebase cleanup
std: add uv_fs_mkdir|rmdir + tests & minor test cleanup in rt::uv::file
WORKING: fleshing out FileStat and FileInfo + tests
std: reverting test files..
refactoring back and cleanup...
Fix uint overflow bugs in std::{at_vec, vec, str}
Closes#8742
Fix issue #8742, which summarized is: unsafe code in vec and str did assume
that a reservation for `X + Y` elements always succeeded, and didn't overflow.
Introduce the method `Vec::reserve_additional(n)` to make it easy to check for
overflow in `Vec::push` and `Vec::push_all`.
In std::str, simplify and remove a lot of the unsafe code and use `push_str`
instead. With improvements to `.push_str` and the new function
`vec::bytes::push_bytes`, it looks like this change has either no or positive
impact on performance.
I believe there are many places still where `v.reserve(A + B)` still can overflow.
This by itself is not an issue unless followed by (unsafe) code that steps aside
boundary checks.
`push_bytes` is implemented with `ptr::copy_memory` here since this
function is intended to be used to implement `.push_str()` for str, so
we want to avoid the overhead.
Issue #8742
Add the method `.reserve_additional(n: uint)`: Check for overflow in
self.len() + n, and reserve that many elements (rounded up to next power
of two). Does nothing if self.len() + n < self.capacity() already.
A SendStr is a string that can hold either a ~str or a &'static str.
This can be useful as an optimization when an allocation is sometimes needed but the common case is statically known.
Possible use cases include Maps with both static and owned keys, or propagating error messages across task boundaries.
SendStr implements most basic traits in a way that hides the fact that it is an enum; in particular things like order and equality are only determined by the content of the wrapped strings.
This basically reimplements #7599 and has a use case for replacing an similar type in `std::rt::logging` ( Added in #9180).
A SendStr is a string that can hold either a ~str or a &'static str.
This can be useful as an optimization when an allocation is sometimes needed but the common case is statically known.
Possible use cases include Maps with both static and owned keys, or propagating error messages across task boundaries.
SendStr implements most basic traits in a way that hides the fact that it is an enum; in particular things like order and equality are only determined by the content of the wrapped strings.
Replaced std::rt:logging::SendableString with SendStr
Added tests for using an SendStr as key in Hash- and Treemaps
FormatMessageA may return non-ascii message,
which is encoded as system code page, not utf8.
This may cause `assert!(is_utf8(v))` failure on
some non-English machines.
This patch replaces it with FormatMessageW,
which returns utf-16 message.
Fixes `make check-stage2-std` failure on my machine. :)
Remove these in favor of the two traits themselves and the wrapper
function std::from_str::from_str.
Add the function std::num::from_str_radix in the corresponding role for
the FromStrRadix trait.
This renames the syntax-extension file to format from ifmt, and it also reduces
the amount of complexity inside by defining all other macros in terms of
format_args!
Work a bit towards #9157 "Remove Either". These instances don't need to use Either and are better expressed in other ways (removing allocations and simplifying types).