Stablize `non-ascii-idents`
This is the stablization PR for RFC 2457. Currently this is waiting on fcp in [tracking issue](https://github.com/rust-lang/rust/issues/55467).
r? `@Manishearth`
Add incomplete feature gate for inherent associate types.
Mentored by ``````@oli-obk``````
So far the only change is that instead of giving an automatic error, the following code compiles:
```rust
struct Foo;
impl Foo {
type Bar = isize;
}
```
The backend work to make it actually usable isn't there yet. In particular, this:
```rust
let x : Foo::Bar;
```
will give you:
```sh
error[E0223]: ambiguous associated type
--> /$RUSTC_DIR/src/test/ui/assoc-inherent.rs:15:13
|
LL | let x : Foo::Bar;
| ^^^^^^^^ help: use fully-qualified syntax: `<Foo as Trait>::Bar`
```
- Rename `broken_intra_doc_links` to `rustdoc::broken_intra_doc_links`
- Ensure that the old lint names still work and give deprecation errors
- Register lints even when running doctests
Otherwise, all `rustdoc::` lints would be ignored.
- Register all existing lints as removed
This unfortunately doesn't work with `register_renamed` because tool
lints have not yet been registered when rustc is running. For similar
reasons, `check_backwards_compat` doesn't work either. Call
`register_removed` directly instead.
- Fix fallout
+ Rustdoc lints for compiler/
+ Rustdoc lints for library/
Note that this does *not* suggest `rustdoc::broken_intra_doc_links` for
`rustdoc::intra_doc_link_resolution_failure`, since there was no time
when the latter was valid.
[librustdoc] Only split lang string on `,`, ` `, and `\t`
Split markdown lang strings into tokens on `,`.
The previous behavior was to split lang strings into tokens on any
character that wasn't a `_`, `_`, or alphanumeric.
This is a potentially breaking change, so please scrutinize! See discussion in #78344.
I noticed some test cases that made me wonder if there might have been some reason for the original behavior:
```
t("{.no_run .example}", false, true, Ignore::None, true, false, false, false, v(), None);
t("{.sh .should_panic}", true, false, Ignore::None, false, false, false, false, v(), None);
t("{.example .rust}", false, false, Ignore::None, true, false, false, false, v(), None);
t("{.test_harness .rust}", false, false, Ignore::None, true, true, false, false, v(), None);
```
It seemed pretty peculiar to specifically test lang strings in braces, with all the tokens prefixed by `.`.
I did some digging, and it looks like the test cases were added way back in [this commit from 2014](https://github.com/rust-lang/rust/commit/3fef7a74ca9a) by `@skade.`
It looks like they were added just to make sure that the splitting was permissive, and aren't testing that those strings in particular are accepted.
Closes https://github.com/rust-lang/rust/issues/78344.
Replace if-let and while-let with `if let` and `while let`
This pull request replaces if-let and while-let with `if let` and `while let`.
closes https://github.com/rust-lang/rust/issues/82205
Only split doctest lang strings on `,`, ` `, and `\t`. Additionally, to
preserve backwards compatibility with pandoc-style langstrings, strip a
surrounding `{}`, and remove leading `.`s from each token.
Prior to this change, doctest lang strings were split on all
non-alphanumeric characters except `-` or `_`, which limited future
extensions to doctest lang string tokens, for example using `=` for
key-value tokens.
This is a breaking change, although it is not expected to be disruptive,
because lang strings using separators other than `,` and ` ` are not
very common
Improve SIMD type element count validation
Resolvesrust-lang/stdsimd#53.
These changes are motivated by `stdsimd` moving in the direction of const generic vectors, e.g.:
```rust
#[repr(simd)]
struct SimdF32<const N: usize>([f32; N]);
```
This makes a few changes:
* Establishes a maximum SIMD lane count of 2^16 (65536). This value is arbitrary, but attempts to validate lane count before hitting potential errors in the backend. It's not clear what LLVM's maximum lane count is, but cranelift's appears to be much less than `usize::MAX`, at least.
* Expands some SIMD intrinsics to support arbitrary lane counts. This resolves the ICE in the linked issue.
* Attempts to catch invalid-sized vectors during typeck when possible.
Unresolved questions:
* Generic-length vectors can't be validated in typeck and are only validated after monomorphization while computing layout. This "works", but the errors simply bail out with no context beyond the name of the type. Should these errors instead return `LayoutError` or otherwise provide context in some way? As it stands, users of `stdsimd` could trivially produce monomorphization errors by making zero-length vectors.
cc `@bjorn3`
Add a new ABI to support cmse_nonsecure_call
This adds support for the `cmse_nonsecure_call` feature to be able to perform non-secure function call.
See the discussion on Zulip [here](https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/Support.20for.20callsite.20attributes/near/223054928).
This is a followup to #75810 which added `cmse_nonsecure_entry`. As for that PR, I assume that the changes are small enough to not have to go through a RFC but I don't mind doing one if needed 😃
I did not yet create a tracking issue, but if most of it is fine, I can create one and update the various files accordingly (they refer to the other tracking issue now).
On the Zulip chat, I believe `@jonas-schievink` volunteered to be a reviewer 💯
This commit adds a new ABI to be selected via `extern
"C-cmse-nonsecure-call"` on function pointers in order for the compiler to
apply the corresponding cmse_nonsecure_call callsite attribute.
For Armv8-M targets supporting TrustZone-M, this will perform a
non-secure function call by saving, clearing and calling a non-secure
function pointer using the BLXNS instruction.
See the page on the unstable book for details.
Signed-off-by: Hugues de Valon <hugues.devalon@arm.com>
Edit multiple error code Markdown files
Makes small edits to several error code files. Fixes some missing punctuation. Changes some wording, grammar, and formatting for clarity and readability.
Adds a link to the rustup book in E0658.
Makes small edits to several error code files. Fixes some
missing punctuation. Changes some wording, grammar, and formatting
for clarity and readability.
Adds a link to the rustup book in E0658.
They were originally called "opt-in, built-in traits" (OIBITs), but
people realized that the name was too confusing and a mouthful, and so
they were renamed to just "auto traits". The feature flag's name wasn't
updated, though, so that's what this PR does.
There are some other spots in the compiler that still refer to OIBITs,
but I don't think changing those now is worth it since they are internal
and not particularly relevant to this PR.
Also see <https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/opt-in.2C.20built-in.20traits.20(auto.20traits).20feature.20name>.
This is a squash of these commits:
- Update E0744 about control flow in `const` contexts to reflect current status of `const fn`.
- E0744 isn't just about `for` loops or control flow
- Fix formatting on E0744 cause my editor decided to not copy it well
- Improve wording
- Fix a markdown formatting error
- Fix E0744's description as I interpreted some code wrong
- Fix a minor wording issue again
- Add a few more links to blocking issues
- Improve links to tracking issues
Deny broken intra-doc links in linkchecker
Since rustdoc isn't warning about these links, check for them manually.
This also fixes the broken links that popped up from the lint.
Stabilize move_ref_pattern
# Implementation
- Initially the rule was added in the run-up to 1.0. The AST-based borrow checker was having difficulty correctly enforcing match expressions that combined ref and move bindings, and so it was decided to simplify forbid the combination out right.
- The move to MIR-based borrow checking made it possible to enforce the rules in a finer-grained level, but we kept the rule in place in an effort to be conservative in our changes.
- In #68376, @Centril lifted the restriction but required a feature-gate.
- This PR removes the feature-gate.
Tracking issue: #68354.
# Description
This PR is to stabilize the feature `move_ref_pattern`, which allows patterns
containing both `by-ref` and `by-move` bindings at the same time.
For example: `Foo(ref x, y)`, where `x` is `by-ref`,
and `y` is `by-move`.
The rules of moving a variable also apply here when moving *part* of a variable,
such as it can't be referenced or moved before.
If this pattern is used, it would result in *partial move*, which means that
part of the variable is moved. The variable that was partially moved from
cannot be used as a whole in this case, only the parts that are still
not moved can be used.
## Documentation
- The reference (rust-lang/reference#881)
- Rust by example (rust-lang/rust-by-example#1377)
## Tests
There are many tests, but I think one of the comperhensive ones:
- [borrowck-move-ref-pattern-pass.rs](85fbf49ce0/src/test/ui/pattern/move-ref-patterns/borrowck-move-ref-pattern-pass.rs)
- [borrowck-move-ref-pattern.rs](85fbf49ce0/src/test/ui/pattern/move-ref-patterns/borrowck-move-ref-pattern.rs)
# Examples
```rust
#[derive(PartialEq, Eq)]
struct Finished {}
#[derive(PartialEq, Eq)]
struct Processing {
status: ProcessStatus,
}
#[derive(PartialEq, Eq)]
enum ProcessStatus {
One,
Two,
Three,
}
#[derive(PartialEq, Eq)]
enum Status {
Finished(Finished),
Processing(Processing),
}
fn check_result(_url: &str) -> Status {
// fetch status from some server
Status::Processing(Processing {
status: ProcessStatus::One,
})
}
fn wait_for_result(url: &str) -> Finished {
let mut previous_status = None;
loop {
match check_result(url) {
Status::Finished(f) => return f,
Status::Processing(p) => {
match (&mut previous_status, p.status) {
(None, status) => previous_status = Some(status), // first status
(Some(previous), status) if *previous == status => {} // no change, ignore
(Some(previous), status) => { // Now it can be used
// new status
*previous = status;
}
}
}
}
}
}
```
Before, we would have used:
```rust
match (&previous_status, p.status) {
(Some(previous), status) if *previous == status => {} // no change, ignore
(_, status) => {
// new status
previous_status = Some(status);
}
}
```
Demonstrating *partial move*
```rust
fn main() {
#[derive(Debug)]
struct Person {
name: String,
age: u8,
}
let person = Person {
name: String::from("Alice"),
age: 20,
};
// `name` is moved out of person, but `age` is referenced
let Person { name, ref age } = person;
println!("The person's age is {}", age);
println!("The person's name is {}", name);
// Error! borrow of partially moved value: `person` partial move occurs
//println!("The person struct is {:?}", person);
// `person` cannot be used but `person.age` can be used as it is not moved
println!("The person's age from person struct is {}", person.age);
}
```
Give `impl Trait` in a `const fn` its own feature gate
...previously it was gated under `#![feature(const_fn)]`.
I think we actually want to do this in all const-contexts? If so, this should be `#![feature(const_impl_trait)]` instead. I don't think there's any way to make use of `impl Trait` within a `const` initializer.
cc #77463
r? `@oli-obk`
Overhaul const-checking diagnostics
The primary purpose of this PR was to remove `NonConstOp::STOPS_CONST_CHECKING`, which causes any additional errors found by the const-checker to be silenced. I used this flag to preserve diagnostic parity with `qualify_min_const_fn.rs`, which has since been removed.
However, simply removing the flag caused a deluge of errors in some cases, since an error would be emitted any time a local or temporary had a wrong type. To remedy this, I added an alternative system (`DiagnosticImportance`) to silence additional error messages that were likely to distract the user from the underlying issue. When an error of the highest importance occurs, all less important errors are silenced. When no error of the highest importance occurs, all less important errors are emitted after checking is complete. Following the suggestions from the important error is usually enough to fix the less important errors, so this should lead to better UX most of the time.
There's also some unrelated diagnostics improvements in this PR isolated in their own commits. Splitting them out would be possible, but a bit of a pain. This isn't as tidy as some of my other PRs, but it should *only* affect diagnostics, never whether or not something passes const-checking. Note that there are a few trivial exceptions to this, like banning `Yield` in all const-contexts, not just `const fn`.
As always, meant to be reviewed commit-by-commit.
r? `@oli-obk`
This patch adds support for the LLVM cmse_nonsecure_entry attribute.
This is a target-dependent attribute that only has sense for the
thumbv8m Rust targets.
You can find more information about this attribute here:
https://developer.arm.com/documentation/ecm0359818/latest/
Signed-off-by: Hugues de Valon <hugues.devalon@arm.com>
Improve unresolved use error message
"use of undeclared type or module `foo`" doesn't mention that it could be a crate.
This error can happen when users forget to add a dependency to `Cargo.toml`, so I think it's important to mention that it could be a missing crate.
I've used a heuristic based on Rust's naming conventions. It complains about an unknown type if the ident starts with an upper-case letter, and crate or module otherwise. It seems to work very well. The expanded error help covers both an unknown type and a missing crate case.
Add derive macro for specifying diagnostics using attributes.
Introduces `#[derive(SessionDiagnostic)]`, a derive macro for specifying structs that can be converted to Diagnostics using directions given by attributes on the struct and its fields. Currently, the following attributes have been implemented:
- `#[code = "..."]` -- this sets the Diagnostic's error code, and must be provided on the struct iself (ie, not on a field). Equivalent to calling `code`.
- `#[message = "..."]` -- this sets the Diagnostic's primary error message.
- `#[label = "..."]` -- this must be applied to fields of type `Span`, and is equivalent to `span_label`
- `#[suggestion(..)]` -- this allows a suggestion message to be supplied. This attribute must be applied to a field of type `Span` or `(Span, Applicability)`, and is equivalent to calling `span_suggestion`. Valid arguments are:
- `message = "..."` -- this sets the suggestion message.
- (Optional) `code = "..."` -- this suggests code for the suggestion. Defaults to empty.
`suggestion`also comes with other variants: `#[suggestion_short(..)]`, `#[suggestion_hidden(..)]` and `#[suggestion_verbose(..)]` which all take the same keys.
Within the strings passed to each attribute, fields can be referenced without needing to be passed explicitly into the format string -- eg, `#[error = "{ident} already declared"] ` will set the error message to `format!("{} already declared", &self.ident)`. Any fields on the struct can be referenced in this way.
Additionally, for any of these attributes, Option fields can be used to only optionally apply the decoration -- for example:
```rust
#[derive(SessionDiagnostic)]
#[code = "E0123"]
struct SomeKindOfError {
...
#[suggestion(message = "informative error message")]
opt_sugg: Option<(Span, Applicability)>
...
}
```
will not emit a suggestion if `opt_sugg` is `None`.
We plan on iterating on this macro further; this PR is a start.
Closes#61132.
r? `@oli-obk`
Give a better error message for duplicate built-in macros
Minor follow-up to https://github.com/rust-lang/rust/pull/75176 giving a better error message for duplicate builtin macros. This would have made it a little easier to debug.
r? @petrochenkov
Previously, this would say no such macro existed, but this was
misleading, since the macro _did_ exist, it was just already seen.
- Say where the macro was previously defined
- Add long-form error message