It lints against features that are inteded to be internal to the
compiler and standard library. Implements MCP #596.
We allow `internal_features` in the standard library and compiler as those
use many features and this _is_ the standard library from the "internal to the compiler and
standard library" after all.
Marking some features as internal wasn't exactly the most scientific approach, I just marked some
mostly obvious features. While there is a categorization in the macro,
it's not very well upheld (should probably be fixed in another PR).
We always pass `-Ainternal_features` in the testsuite
About 400 UI tests and several other tests use internal features.
Instead of throwing the attribute on each one, just always allow them.
There's nothing wrong with testing internal features^^
Initial support for loongarch64-unknown-linux-gnu
Hi, We hope to add a new port in rust for LoongArch.
LoongArch intro
LoongArch is a RISC style ISA which is independently designed by Loongson
Technology in China. It is divided into two versions, the 32-bit version (LA32)
and the 64-bit version (LA64). LA64 applications have application-level
backward binary compatibility with LA32 applications. LoongArch is composed of
a basic part (Loongson Base) and an expanded part. The expansion part includes
Loongson Binary Translation (LBT), Loongson VirtualiZation (LVZ), Loongson SIMD
EXtension (LSX) and Loongson Advanced SIMD EXtension(LASX).
Currently the LA464 processor core supports LoongArch ISA and the Loongson
3A5000 processor integrates 4 64-bit LA464 cores. LA464 is a four-issue 64-bit
high-performance processor core. It can be used as a single core for high-end
embedded and desktop applications, or as a basic processor core to form an
on-chip multi-core system for server and high-performance machine applications.
Documentations:
ISA:
https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html
ABI:
https://loongson.github.io/LoongArch-Documentation/LoongArch-ELF-ABI-EN.html
More docs can be found at:
https://loongson.github.io/LoongArch-Documentation/README-EN.html
Since last year, we have locally adapted two versions of rust, rust1.41 and rust1.57, and completed the test locally.
I'm not sure if I'm submitting all the patches at once, so I split up the patches and here's one of the commits
Only the android libunwind detection remains in the build script
* Reduces dependence on build scripts for building the standard library
* Reduces dependence on exact target names in favor of using semantic
cfg(target_*) usage.
* Keeps almost all code related to linking of the unwinder in one file
Change the way libunwind is linked for *-windows-gnullvm targets
I have no idea why previous way works for `x86_64-fortanix-unknown-sgx` (assuming it actually works...) but not for `gnullvm`. It fails when linking libtest during Rust build (unless somebody adds `RUSTFLAGS='-Clinkarg=-lunwind'`).
Also fixes exception handling on AArch64.
After rust-lang/rust#101946 this completes the move to cfg-if 1.0 by:
* Updating getrandom 0.1.14->0.1.16
* Updating panic_abort, panic_unwind, and unwind to cfg-if 1.0
stdlib support for Apple WatchOS
This is a follow-up to https://github.com/rust-lang/rust/pull/95243 (Add Apple WatchOS compiler targets) that adds stdlib support for Apple WatchOS.
`@deg4uss3r`
`@nagisa`
Remove libstd's calls to `C-unwind` foreign functions
Remove all libstd and its dependencies' usage of `extern "C-unwind"`.
This is a prerequiste of a WIP PR which will forbid libraries calling `extern "C-unwind"` functions to be compiled in `-Cpanic=unwind` and linked against `panic_abort` (this restriction is necessary to address soundness bug #96926).
Cargo will ensure all crates are compiled with the same `-Cpanic` but the std is only compiled `-Cpanic=unwind` but needs the ability to be linked into `-Cpanic=abort`.
Currently there are two places where `C-unwind` is used in libstd:
* `__rust_start_panic` is used for interfacing to the panic runtime. This could be `extern "Rust"`
* `_{rdl,rg}_oom`: a shim `__rust_alloc_error_handler` will be generated by codegen to call into one of these; they can also be `extern "Rust"` (in fact, the generated shim is used as `extern "Rust"`, so I am not even sure why these are not, probably because they used to `extern "C"` and was changed to `extern "C-unwind"` when we allow alloc error hooks to unwind, but they really should just be using Rust ABI).
For dependencies, there is only one `extern "C-unwind"` function call, in `unwind` crate. This can be expressed as a re-export.
More dicussions can be seen in the Zulip thread: https://rust-lang.zulipchat.com/#narrow/stream/210922-project-ffi-unwind/topic/soundness.20in.20mixed.20panic.20mode
`@rustbot` label: T-libs F-c_unwind
Bump bootstrap compiler to 1.61.0 beta
This PR bumps the bootstrap compiler to the 1.61.0 beta. The first commit changes the stage0 compiler, the second commit applies the "mechanical" changes and the third and fourth commits apply changes explained in the relevant comments.
r? `@Mark-Simulacrum`
libunwind: readd link attrs to _Unwind_Backtrace
It seems the removal of these in 1c07096a45 was unintended; readding them fixes the build.
fixesrust-lang/rust#93349
r? `@alexcrichton`
This fixes warning when building Rust and running tests:
```
warning: library kind `static-nobundle` has been superseded by specifying `-bundle` on library kind `static`. Try `static:-bundle`
warning: `rustc_llvm` (lib) generated 2 warnings (1 duplicate)
```
SOLID[1] is an embedded development platform provided by Kyoto
Microcomputer Co., Ltd. This commit introduces a basic Tier 3 support
for SOLID.
# New Targets
The following targets are added:
- `aarch64-kmc-solid_asp3`
- `armv7a-kmc-solid_asp3-eabi`
- `armv7a-kmc-solid_asp3-eabihf`
SOLID's target software system can be divided into two parts: an
RTOS kernel, which is responsible for threading and synchronization,
and Core Services, which provides filesystems, networking, and other
things. The RTOS kernel is a μITRON4.0[2][3]-derived kernel based on
the open-source TOPPERS RTOS kernels[4]. For uniprocessor systems
(more precisely, systems where only one processor core is allocated for
SOLID), this will be the TOPPERS/ASP3 kernel. As μITRON is
traditionally only specified at the source-code level, the ABI is
unique to each implementation, which is why `asp3` is included in the
target names.
More targets could be added later, as we support other base kernels
(there are at least three at the point of writing) and are interested
in supporting other processor architectures in the future.
# C Compiler
Although SOLID provides its own supported C/C++ build toolchain, GNU Arm
Embedded Toolchain seems to work for the purpose of building Rust.
# Unresolved Questions
A μITRON4 kernel can support `Thread::unpark` natively, but it's not
used by this commit's implementation because the underlying kernel
feature is also used to implement `Condvar`, and it's unclear whether
`std` should guarantee that parking tokens are not clobbered by other
synchronization primitives.
# Unsupported or Unimplemented Features
Most features are implemented. The following features are not
implemented due to the lack of native support:
- `fs::File::{file_attr, truncate, duplicate, set_permissions}`
- `fs::{symlink, link, canonicalize}`
- Process creation
- Command-line arguments
Backtrace generation is not really a good fit for embedded targets, so
it's intentionally left unimplemented. Unwinding is functional, however.
## Dynamic Linking
Dynamic linking is not supported. The target platform supports dynamic
linking, but enabling this in Rust causes several problems.
- The linker invocation used to build the shared object of `std` is
too long for the platform-provided linker to handle.
- A linker script with specific requirements is required for the
compiled shared object to be actually loadable.
As such, we decided to disable dynamic linking for now. Regardless, the
users can try to create shared objects by manually invoking the linker.
## Executable
Building an executable is not supported as the notion of "executable
files" isn't well-defined for these targets.
[1] https://solid.kmckk.com/SOLID/
[2] http://ertl.jp/ITRON/SPEC/mitron4-e.html
[3] https://en.wikipedia.org/wiki/ITRON_project
[4] https://toppers.jp/
This commit intends to fill out some of the remaining pieces of the
C-unwind ABI. This has a number of other changes with it though to move
this design space forward a bit. Notably contained within here is:
* On `panic=unwind`, the `extern "C"` ABI is now considered as "may
unwind". This fixes a longstanding soundness issue where if you
`panic!()` in an `extern "C"` function defined in Rust that's actually
UB because the LLVM representation for the function has the `nounwind`
attribute, but then you unwind.
* Whether or not a function unwinds now mainly considers the ABI of the
function instead of first checking the panic strategy. This fixes a
miscompile of `extern "C-unwind"` with `panic=abort` because that ABI
can still unwind.
* The aborting stub for non-unwinding ABIs with `panic=unwind` has been
reimplemented. Previously this was done as a small tweak during MIR
generation, but this has been moved to a separate and dedicated MIR
pass. This new pass will, for appropriate functions and function
calls, insert a `cleanup` landing pad for any function call that may
unwind within a function that is itself not allowed to unwind. Note
that this subtly changes some behavior from before where previously on
an unwind which was caught-to-abort it would run active destructors in
the function, and now it simply immediately aborts the process.
* The `#[unwind]` attribute has been removed and all users in tests and
such are now using `C-unwind` and `#![feature(c_unwind)]`.
I think this is largely the last piece of the RFC to implement.
Unfortunately I believe this is still not stabilizable as-is because
activating the feature gate changes the behavior of the existing `extern
"C"` ABI in a way that has no replacement. My thinking for how to enable
this is that we add support for the `C-unwind` ABI on stable Rust first,
and then after it hits stable we change the behavior of the `C` ABI.
That way anyone straddling stable/beta/nightly can switch to `C-unwind`
safely.
Since RFC 3052 soft deprecated the authors field anyway, hiding it from
crates.io, docs.rs, and making Cargo not add it by default, and it is
not generally up to date/useful information, we should remove it from
crates in this repo.