[breaking-change]
1. The internal layout for traits has changed from (vtable, data) to (data, vtable). If you were relying on this in unsafe transmutes, you might get some very weird and apparently unrelated errors. You should not be doing this! Prefer not to do this at all, but if you must, you should use raw::TraitObject rather than hardcoding rustc's internal representation into your code.
2. The minimal type of reference-to-vec-literals (e.g., `&[1, 2, 3]`) is now a fixed size vec (e.g., `&[int, ..3]`) where it used to be an unsized vec (e.g., `&[int]`). If you want the unszied type, you must explicitly give the type (e.g., `let x: &[_] = &[1, 2, 3]`). Note in particular where multiple blocks must have the same type (e.g., if and else clauses, vec elements), the compiler will not coerce to the unsized type without a hint. E.g., `[&[1], &[1, 2]]` used to be a valid expression of type '[&[int]]'. It no longer type checks since the first element now has type `&[int, ..1]` and the second has type &[int, ..2]` which are incompatible.
3. The type of blocks (including functions) must be coercible to the expected type (used to be a subtype). Mostly this makes things more flexible and not less (in particular, in the case of coercing function bodies to the return type). However, in some rare cases, this is less flexible. TBH, I'm not exactly sure of the exact effects. I think the change causes us to resolve inferred type variables slightly earlier which might make us slightly more restrictive. Possibly it only affects blocks with unreachable code. E.g., `if ... { fail!(); "Hello" }` used to type check, it no longer does. The fix is to add a semicolon after the string.
As of RFC 18, struct layout is undefined. Opting into a C-compatible struct
layout is now down with #[repr(C)]. For consistency, specifying a packed
layout is now also down with #[repr(packed)]. Both can be specified.
To fix errors caused by this, just add #[repr(C)] to the structs, and change
#[packed] to #[repr(packed)]
Closes#14309
[breaking-change]
Crates that are resolved normally have their path canonicalized and all
symlinks resolved. This does currently not happen for paths specified
using the --extern option to rustc, which can lead to rustc thinking
that it encountered two different versions of a crate, when it's
actually the same version found through different paths.
To fix this, we must store the canonical path for crates found via
--extern and also use the canonical path when comparing paths.
Fixes#16496
I chose to make two of them because I wanted something close to an
"end-to-end" test (*), but at the same time I wanted a test that
would run on Windows (**).
(*) The run-make test serves as the end-to-end: It constructs an input
that is trying to subvert the hack and we are going to check that it
fails in the attempt).
(**) The compile-fail-fulldeps test serves as a more narrow test that
will be tested on all platforms. It also attempts to subvert the
hack, testing that when you use `new_parser_from_tts`, the resulting
parser does not support reading embedded Idents.
Extended `ast_map::Map` with an iterator over all node id's that match a path suffix.
Extended pretty printer to let users choose particular items to pretty print, either by indicating an integer node-id, or by providing a path suffix.
* Example 1: the suffix `typeck::check::check_struct` matches the item with the path `rustc::middle::typeck::check::check_struct` when compiling the `rustc` crate.
* Example 2: the suffix `and` matches `core::option::Option::and` and `core::result::Result::and` when compiling the `core` crate.
Refactored `pprust` slightly to support the pretty printer changes.
(See individual commits for more description.)
This requires avoiding `quote_...!` for constructing the parts of the
__test module, since that stringifies and reinterns the idents, losing
the special gensym'd nature of them. (#15962.)
Generic extern functions written in Rust have their names mangled, as well as their internal clownshoe __rust_abi functions. This allows e.g. specific monomorphizations of these functions to be used as callbacks.
Closes#12502.
As discovered in #15460, a particular #[link(kind = "static", ...)] line is not
actually guaranteed to link the library at all. The reason for this is that if
the external library doesn't have any referenced symbols in the object generated
by rustc, the entire library is dropped by the linker.
For dynamic native libraries, this is solved by passing -lfoo for all downstream
compilations unconditionally. For static libraries in rlibs this is solved
because the entire archive is bundled in the rlib. The only situation in which
this was a problem was when a static native library was linked to a rust dynamic
library.
This commit brings the behavior of dylibs in line with rlibs by passing the
--whole-archive flag to the linker when linking native libraries. On OSX, this
uses the -force_load flag. This flag ensures that the entire archive is
considered candidate for being linked into the final dynamic library.
This is a breaking change because if any static library is included twice in the
same compilation unit then the linker will start emitting errors about duplicate
definitions now. The fix for this would involve only statically linking to a
library once.
Closes#15460
[breaking-change]
Using the Show impl for Names created global symbols with names like
`"str\"str\"(1027)"`. This adjusts strings, binaries and vtables to
avoid using that impl.
Fixes#15799.
the CFG for match statements.
There were two bugs in issue #14684. One was simply that the borrow
check didn't know about the correct CFG for match statements: the
pattern must be a predecessor of the guard. This disallows the bad
behavior if there are bindings in the pattern. But it isn't enough to
prevent the memory safety problem, because of wildcards; thus, this
patch introduces a more restrictive rule, which disallows assignments
and mutable borrows inside guards outright.
I discussed this with Niko and we decided this was the best plan of
action.
This breaks code that performs mutable borrows in pattern guards. Most
commonly, the code looks like this:
impl Foo {
fn f(&mut self, ...) {}
fn g(&mut self, ...) {
match bar {
Baz if self.f(...) => { ... }
_ => { ... }
}
}
}
Change this code to not use a guard. For example:
impl Foo {
fn f(&mut self, ...) {}
fn g(&mut self, ...) {
match bar {
Baz => {
if self.f(...) {
...
} else {
...
}
}
_ => { ... }
}
}
}
Sometimes this can result in code duplication, but often it illustrates
a hidden memory safety problem.
Closes#14684.
[breaking-change]
When invoking the compiler in parallel, the intermediate output of the object
files and bytecode can stomp over one another if two crates with the same name
are being compiled.
The output file is already being disambiguated with `-C extra-filename`, so this
commit alters the naming of the temporary files to also mix in the extra
filename to ensure that file names don't clash.
In a cargo-driven world the primary location for the name of a crate will be in
its manifest, not in the source file itself. The purpose of this flag is to
reduce required duplication for new cargo projects.
This is a breaking change because the existing --crate-name flag actually
printed the crate name. This flag was renamed to --print-crate-name, and to
maintain consistence, the --crate-file-name flag was renamed to
--print-file-name.
To maintain backwards compatibility, the --crate-file-name flag is still
recognized, but it is deprecated.
[breaking-change]
This comit implements a new flag, --extern, which is used to specify where a
crate is located. The purpose of this flag is to bypass the normal crate
loading/matching of the compiler to point it directly at the right file.
This flag takes the form `--extern foo=bar` where `foo` is the name of a crate
and `bar` is the location at which to find the crate. Multiple `--extern`
directives are allowed with the same crate name to specify the rlib/dylib pair
for a crate. It is invalid to specify more than one rlib or more than one dylib,
and it's required that the crates are valid rust crates.
I have also added some extensive documentation to metadata::loader about how
crate loading should work.
RFC: 0035-remove-crate-id
floating point numbers for real.
This will break code that looks like:
let mut x = 0;
while ... {
x += 1;
}
println!("{}", x);
Change that code to:
let mut x = 0i;
while ... {
x += 1;
}
println!("{}", x);
Closes#15201.
[breaking-change]
This breaks a fair amount of code. The typical patterns are:
* `for _ in range(0, 10)`: change to `for _ in range(0u, 10)`;
* `println!("{}", 3)`: change to `println!("{}", 3i)`;
* `[1, 2, 3].len()`: change to `[1i, 2, 3].len()`.
RFC #30. Closes#6023.
[breaking-change]
It was accidentally removed in #15006 and that somehow got past the
build bots, causing `src/test/run-make/c-dynamic-dylib` to fail on at
least my linux system.
This resolves#15103 (thanks to @alexcrichton!).
The nightly builds on linux have been failing over the past few days due to a
malformed LD_LIBRARY_PATH. It appears that the underlying cause is that one of
the tests, dep-info-custom, recursively invokes make but the RUSTC variable
passed down has the string "$LD_LIBRARY_PATH". This is intended to read the
host's original LD_LIBRARY_PATH, but it appears that the makefile is eagerly
expanding the "$L" to nothing, causing the original host's LD_LIBRARY_PATH to be
ignored.
This fix removes passing the string "$LD_LIBRARY_PATH" and rather expands it
eagerly to ensure that escaping doesn't happen at a later stage. I'm still not
entirely sure why the makefile is interpreting the dollar as a variable, but
this seems to fix the issue.
The nightly builds on linux have been failing over the past few days due to a
malformed LD_LIBRARY_PATH. It appears that the underlying cause is that one of
the tests, dep-info-custom, recursively invokes make but the RUSTC variable
passed down has the string "$LD_LIBRARY_PATH". This is intended to read the
host's original LD_LIBRARY_PATH, but it appears that the makefile is eagerly
expanding the "$L" to nothing, causing the original host's LD_LIBRARY_PATH to be
ignored.
This fix removes passing the string "$LD_LIBRARY_PATH" and rather expands it
eagerly to ensure that escaping doesn't happen at a later stage. I'm still not
entirely sure why the makefile is interpreting the dollar as a variable, but
this seems to fix the issue.
This involved a few changes to the local build system:
* Makefiles now prefer our own LD_LIBRARY_PATH over the user's LD_LIBRARY_PATH
in order to support building rust with rust already installed.
* The compiletest program was taught to correctly pass through the aux dir as a
component of LD_LIBRARY_PATH in more situations.
This change was spliced out of #14832 to consist of just the fixes to running
tests without an rpath setting embedded in executables.
* The select/plural methods from format strings are removed
* The # character no longer needs to be escaped
* The \-based escapes have been removed
* '{{' is now an escape for '{'
* '}}' is now an escape for '}'
Closes#14810
[breaking-change]