floating point numbers for real.
This will break code that looks like:
let mut x = 0;
while ... {
x += 1;
}
println!("{}", x);
Change that code to:
let mut x = 0i;
while ... {
x += 1;
}
println!("{}", x);
Closes#15201.
[breaking-change]
This can break code that looked like:
impl Foo for Box<Any> {
fn f(&self) { ... }
}
let x: Box<Any + Send> = ...;
x.f();
Change such code to:
impl Foo for Box<Any> {
fn f(&self) { ... }
}
let x: Box<Any> = ...;
x.f();
That is, upcast before calling methods.
This is a conservative solution to #5781. A more proper treatment (see
the xfail'd `trait-contravariant-self.rs`) would take variance into
account. This change fixes the soundness hole.
Some library changes had to be made to make this work. In particular,
`Box<Any>` is no longer showable, and only `Box<Any+Send>` is showable.
Eventually, this restriction can be lifted; for now, it does not prove
too onerous, because `Any` is only used for propagating the result of
task failure.
This patch also adds a test for the variance inference work in #12828,
which accidentally landed as part of DST.
Closes#5781.
[breaking-change]
The constructor for `TaskBuilder` is being changed to an associated
function called `new` for consistency with the rest of the standard
library.
Closes#13666
[breaking-change]
The reasons for doing this are:
* The model on which linked failure is based is inherently complex
* The implementation is also very complex, and there are few remaining who
fully understand the implementation
* There are existing race conditions in the core context switching function of
the scheduler, and possibly others.
* It's unclear whether this model of linked failure maps well to a 1:1 threading
model
Linked failure is often a desired aspect of tasks, but we would like to take a
much more conservative approach in re-implementing linked failure if at all.
Closes#8674Closes#8318Closes#8863