Add support for `for await` loops
This adds support for `for await` loops. This includes parsing, desugaring in AST->HIR lowering, and adding some support functions to the library.
Given a loop like:
```rust
for await i in iter {
...
}
```
this is desugared to something like:
```rust
let mut iter = iter.into_async_iter();
while let Some(i) = loop {
match core::pin::Pin::new(&mut iter).poll_next(cx) {
Poll::Ready(i) => break i,
Poll::Pending => yield,
}
} {
...
}
```
This PR also adds a basic `IntoAsyncIterator` trait. This is partly for symmetry with the way `Iterator` and `IntoIterator` work. The other reason is that for async iterators it's helpful to have a place apart from the data structure being iterated over to store state. `IntoAsyncIterator` gives us a good place to do this.
I've gated this feature behind `async_for_loop` and opened #118898 as the feature tracking issue.
r? `@compiler-errors`
don't visit nested bodies in `is_const_evaluatable`
Fixes#11939
This ICE happened in `if_let_some_else_none`, but the root problem is in one of the utils that it uses.
It is (was) possible for `is_const_evalutable` to visit nested bodies which would lead to it trying to get the type of one of the expressions with the wrong typeck table, which won't have the type stored.
Notably, for the expression `Bytes::from_static(&[0; 256 * 1024]);` in the linked issue, the array length is an anonymous const in which type checking happens on its own, so we can't use the typeck table of the enclosing function in there.
Visiting nested bodies is also not needed for checking whether an expression can be const, so I think it's safe to ignore just ignore them altogether.
changelog: Fix ICE when checking for constness in nested bodies
Renamings:
- find -> opt_hir_node
- get -> hir_node
- find_by_def_id -> opt_hir_node_by_def_id
- get_by_def_id -> hir_node_by_def_id
Fix rebase changes using removed methods
Use `tcx.hir_node_by_def_id()` whenever possible in compiler
Fix clippy errors
Fix compiler
Apply suggestions from code review
Co-authored-by: Vadim Petrochenkov <vadim.petrochenkov@gmail.com>
Add FIXME for `tcx.hir()` returned type about its removal
Simplify with with `tcx.hir_node_by_def_id`
Introduce support for `async gen` blocks
I'm delighted to demonstrate that `async gen` block are not very difficult to support. They're simply coroutines that yield `Poll<Option<T>>` and return `()`.
**This PR is WIP and in draft mode for now** -- I'm mostly putting it up to show folks that it's possible. This PR needs a lang-team experiment associated with it or possible an RFC, since I don't think it falls under the jurisdiction of the `gen` RFC that was recently authored by oli (https://github.com/rust-lang/rfcs/pull/3513, https://github.com/rust-lang/rust/issues/117078).
### Technical note on the pre-generator-transform yield type:
The reason that the underlying coroutines yield `Poll<Option<T>>` and not `Poll<T>` (which would make more sense, IMO, for the pre-transformed coroutine), is because the `TransformVisitor` that is used to turn coroutines into built-in state machine functions would have to destructure and reconstruct the latter into the former, which requires at least inserting a new basic block (for a `switchInt` terminator, to match on the `Poll` discriminant).
This does mean that the desugaring (at the `rustc_ast_lowering` level) of `async gen` blocks is a bit more involved. However, since we already need to intercept both `.await` and `yield` operators, I don't consider it much of a technical burden.
r? `@ghost`
never_patterns: Parse match arms with no body
Never patterns are meant to signal unreachable cases, and thus don't take bodies:
```rust
let ptr: *const Option<!> = ...;
match *ptr {
None => { foo(); }
Some(!),
}
```
This PR makes rustc accept the above, and enforces that an arm has a body xor is a never pattern. This affects parsing of match arms even with the feature off, so this is delicate. (Plus this is my first non-trivial change to the parser).
~~The last commit is optional; it introduces a bit of churn to allow the new suggestions to be machine-applicable. There may be a better solution? I'm not sure.~~ EDIT: I removed that commit
r? `@compiler-errors`
Add `never_patterns` feature gate
This PR adds the feature gate and most basic parsing for the experimental `never_patterns` feature. See the tracking issue (https://github.com/rust-lang/rust/issues/118155) for details on the experiment.
`@scottmcm` has agreed to be my lang-team liaison for this experiment.
- Rename them both `as_str`, which is the typical name for a function
that returns a `&str`. (`to_string` is appropriate for functions
returning `String` or maybe `Cow<'a, str>`.)
- Change `UnOp::as_str` from an associated function (weird!) to a
method.
- Avoid needless `self` dereferences.
teach `eager_or_lazy` about panicky arithmetic operations
Fixes#9422Fixes#9814Fixes#11793
It's a bit sad that we have to do this because arithmetic operations seemed to me like the prime example where a closure would not be necessary, but this has "side effects" (changes behavior when going from lazy to eager) as some of these panic on overflow/underflow if compiled with `-Coverflow-checks` (which is the default in debug mode).
Given the number of backlinks in the mentioned issues, this seems to be a FP that is worth fixing, probably.
changelog: [`unnecessary_lazy_evaluations`]: don't lint if closure has panicky arithmetic operations
Implement new lint `iter_over_hash_type`
Implements and fixes https://github.com/rust-lang/rust-clippy/issues/11788
This PR adds a new *restriction* lint `iter_over_hash_type` which prevents `Hash`-types (that is, `HashSet` and `HashMap`) from being used as the iterator in `for` loops.
The justification for this is because in `Hash`-based types, the ordering of items is not guaranteed and may vary between executions of the same program on the same hardware. In addition, it reduces readability due to the unclear iteration order.
The implementation of this lint also ensures the following:
- Calls to `HashMap::keys`, `HashMap::values`, and `HashSet::iter` are also denied when used in `for` loops,
- When this expression is used in procedural macros, it is not linted/denied.
changelog: add new `iter_over_hash_type` lint to prevent unordered iterations through hashed data structures
Don't check for late-bound vars, check for escaping bound vars
Fixes an assertion that didn't make sense. Many valid and well-formed types *have* late-bound vars (e.g. `for<'a> fn(&'a ())`), they just must not have *escaping* late-bound vars in order to be normalized correctly.
Addresses rust-lang/rust-clippy#11230, cc `@jyn514` and `@matthiaskrgr`
changelog: don't check for late-bound vars, check for escaping bound vars. Addresses rust-lang/rust-clippy#11230
Fixes to `manual_let_else`'s divergence check
A few changes to the divergence check in `manual_let_else` and moves it the implementation to `clippy_utils` since it's generally useful:
* Handle internal `break` and `continue` expressions.
e.g. The first loop is divergent, but the second is not.
```rust
{
loop {
break 'outer;
};
}
{
loop {
break;
};
}
```
* Match rust's definition of divergence which is defined via the type system.
e.g. The following is not considered divergent by rustc as the inner block has a result type of `()`:
```rust
{
'a: {
panic!();
break 'a;
};
}
```
* Handle when adding a single semicolon would make the expression divergent.
e.g. The following would be a divergent if a semicolon were added after the `if` expression:
```rust
{ if panic!() { 0 } else { 1 } }
```
changelog: None
Lint `needless_borrow` and `explicit_auto_deref` on most union field accesses
Changes both lints to follow rustc's rules around auto-deref through `ManuallyDrop` union fields rather than just bailing on union fields.
changelog: [`needless_borrow`] & [`explicit_auto_deref`]: Lint on most union field accesses
[`map_identity`]: respect match ergonomics
Fixes#11764
Note: the original tests before this were slightly wrong themselves already and had to be changed. They were calling `map` on an iterator of `&(i32, i32)`s, so this PR would stop linting there, but they were meant to test something else unrelated to binding modes, so I just changed them to remove the references so that it iterates over owned values and they all bind by value. This way they continue to test what they checked for before: the identity function for tuple patterns.
changelog: [`map_identity`]: respect match ergonomics