It appears that the --as-needed flag to linkers will not pull in a dynamic library unless it satisfies a non weak undefined symbol. The linkage1 test was creating a dynamic library where it was only used for a weak-symbol as part of an executable, so the dynamic library was getting discarded.
This commit adds another symbol to the library which satisfies a strong undefined symbol, so the library is pulled in to resolve the weak reference.
This is adequate because when a function has a type that isn't caught here,
that is, it has a single argument, but it *isn't* `&mut BenchHarness`, it
errors later on with:
error: mismatched types: expected `fn(&mut test::BenchHarness)` but found
`fn(int)` (expected &-ptr but found int)
which I consider acceptable.
Closes#12997
This PR enables the use of mutable slices in *mutable* static items. The work was started by @xales and I added a follow-up commit that moves the *immutable* restriction to the recently added `check_static`
Closes#11411
its a common (yet easily fixable) error to just forget parens at the end of getter-like methods without any arguments.
The current error message for that case asks for an anonymous function, this patch adds a note asking for either an anonymous function, or for trailing parens.
This is my first contribution! do i need to do anything else?
This commit switches over the backtrace infrastructure from piggy-backing off
the RUST_LOG environment variable to using the RUST_BACKTRACE environment
variable (logging is now disabled in libstd).
This commit moves all logging out of the standard library into an external
crate. This crate is the new crate which is responsible for all logging macros
and logging implementation. A few reasons for this change are:
* The crate map has always been a bit of a code smell among rust programs. It
has difficulty being loaded on almost all platforms, and it's used almost
exclusively for logging and only logging. Removing the crate map is one of the
end goals of this movement.
* The compiler has a fair bit of special support for logging. It has the
__log_level() expression as well as generating a global word per module
specifying the log level. This is unfairly favoring the built-in logging
system, and is much better done purely in libraries instead of the compiler
itself.
* Initialization of logging is much easier to do if there is no reliance on a
magical crate map being available to set module log levels.
* If the logging library can be written outside of the standard library, there's
no reason that it shouldn't be. It's likely that we're not going to build the
highest quality logging library of all time, so third-party libraries should
be able to provide just as high-quality logging systems as the default one
provided in the rust distribution.
With a migration such as this, the change does not come for free. There are some
subtle changes in the behavior of liblog vs the previous logging macros:
* The core change of this migration is that there is no longer a physical
log-level per module. This concept is still emulated (it is quite useful), but
there is now only a global log level, not a local one. This global log level
is a reflection of the maximum of all log levels specified. The previously
generated logging code looked like:
if specified_level <= __module_log_level() {
println!(...)
}
The newly generated code looks like:
if specified_level <= ::log::LOG_LEVEL {
if ::log::module_enabled(module_path!()) {
println!(...)
}
}
Notably, the first layer of checking is still intended to be "super fast" in
that it's just a load of a global word and a compare. The second layer of
checking is executed to determine if the current module does indeed have
logging turned on.
This means that if any module has a debug log level turned on, all modules
with debug log levels get a little bit slower (they all do more expensive
dynamic checks to determine if they're turned on or not).
Semantically, this migration brings no change in this respect, but
runtime-wise, this will have a perf impact on some code.
* A `RUST_LOG=::help` directive will no longer print out a list of all modules
that can be logged. This is because the crate map will no longer specify the
log levels of all modules, so the list of modules is not known. Additionally,
warnings can no longer be provided if a malformed logging directive was
supplied.
The new "hello world" for logging looks like:
#[phase(syntax, link)]
extern crate log;
fn main() {
debug!("Hello, world!");
}
This commit shreds all remnants of libextra from the compiler and standard
distribution. Two modules, c_vec/tempfile, were moved into libstd after some
cleanup, and the other modules were moved to separate crates as seen fit.
Closes#8784Closes#12413Closes#12576
This commit shreds all remnants of libextra from the compiler and standard
distribution. Two modules, c_vec/tempfile, were moved into libstd after some
cleanup, and the other modules were moved to separate crates as seen fit.
Closes#8784Closes#12413Closes#12576
Previously, the cfg attribute `cfg(not(a, b))` was translated to `(!a && !b)`,
but this isn't very useful because that can already be expressed as
`cfg(not(a), not(b))`. This commit changes the translation to `!(a && b)` which
is more symmetrical of the rest of the `cfg` attribute.
Put another way, I would expect `cfg(clause)` to be the opposite of
`cfg(not(clause))`, but this is not currently the case with multiple element
clauses.
Fix a test that was missed in the chan/port renaming (PR #12815). This was missed because it is skipped on linux and windows, and the mac bots were moving at the time the PR landed.
# Summary
This patch introduces the `_` token into the type grammar, with the meaning "infer this type".
With this change, the following two lines become equivalent:
```
let x = foo();
let x: _ = foo();
```
But due to its composability, it enables partial type hints like this:
```
let x: Bar<_> = baz();
```
Using it on the item level is explicitly forbidden, as the Rust language does not enable global type inference by design.
This implements the feature requested in https://github.com/mozilla/rust/issues/9508.
# Things requiring clarification
- The change to enable it is very small, but I have only limited understanding of the related code, so the approach here might be wrong.
- In particular, while this patch works, it does so in a way not originally intended according to the code comments.
- This probably needs more tests, or rather feedback for which tests are still missing.
- I'm unsure how this interacts with lifetime parameters, and whether it is correct in regard to them.
- Partial type hints on the right side of `as` like `&foo as *_` work in both a normal function contexts and in constexprs like `static foo: *int = &'static 123 as *_`. The question is whether this should be allowed in general.
# Todo for this PR
- The manual and tutorial still needs updating.
# Bugs I'm unsure how to fix
- Requesting inference for the top level of the right hand side of a `as` fails to infer correctly, even if all possible hints are given:
```
.../type_hole_1.rs:35:18: 35:22 error: the type of this value must be known in this context
.../type_hole_1.rs:35 let a: int = 1u32 as _;
^~~~
```
lint: add lint for use of a `~[T]`.
This is useless at the moment (since pretty much every crate uses
`~[]`), but should help avoid regressions once completely removed from a
crate.
## read+write modifier '+'
This small sugar was left out in the original implementation (#5359).
When an output operand with the '+' modifier is encountered, we store the index of that operand alongside the expression to create and append an input operand later. The following lines are equivalent:
```
asm!("" : "+m"(expr));
asm!("" : "=m"(expr) : "0"(expr));
```
## misplaced options and clobbers give a warning
It's really annoying when a small typo might change behavior without any warning.
```
asm!("mov $1, $0" : "=r"(x) : "r"(8u) : "cc" , "volatile");
//~^ WARNING expected a clobber, but found an option
```
## liveness
Fixed incorrect order of propagation.
Sometimes it caused spurious warnings in code: `warning: value assigned to `i` is never read, #[warn(dead_assignment)] on by default`
~~Note: Rebased on top of another PR. (uses other changes)~~
* [x] Implement read+write
* [x] Warn about misplaced options
* [x] Fix liveness (`dead_assignment` lint)
* [x] Add all tests
For the following code snippet:
```rust
struct Foo { bar: int }
fn foo1(x: &Foo) -> &int {
&x.bar
}
```
This PR generates the following error message:
```rust
test.rs:2:1: 4:2 note: consider using an explicit lifetime parameter as shown: fn foo1<'a>(x: &'a Foo) -> &'a int
test.rs:2 fn foo1(x: &Foo) -> &int {
test.rs:3 &x.bar
test.rs:4 }
test.rs:3:5: 3:11 error: cannot infer an appropriate lifetime for borrow expression due to conflicting requirements
test.rs:3 &x.bar
^~~~~~
```
Currently it does not support methods.
Whenever a failure happens, if a program is run with
`RUST_LOG=std::rt::backtrace` a backtrace will be printed to the task's stderr
handle. Stack traces are uncondtionally printed on double-failure and
rtabort!().
This ended up having a nontrivial implementation, and here's some highlights of
it:
* We're bundling libbacktrace for everything but OSX and Windows
* We use libgcc_s and its libunwind apis to get a backtrace of instruction
pointers
* On OSX we use dladdr() to go from an instruction pointer to a symbol
* On unix that isn't OSX, we use libbacktrace to get symbols
* Windows, as usual, has an entirely separate implementation
Lots more fun details and comments can be found in the source itself.
Closes#10128
Whenever a failure happens, if a program is run with
`RUST_LOG=std::rt::backtrace` a backtrace will be printed to the task's stderr
handle. Stack traces are uncondtionally printed on double-failure and
rtabort!().
This ended up having a nontrivial implementation, and here's some highlights of
it:
* We're bundling libbacktrace for everything but OSX and Windows
* We use libgcc_s and its libunwind apis to get a backtrace of instruction
pointers
* On OSX we use dladdr() to go from an instruction pointer to a symbol
* On unix that isn't OSX, we use libbacktrace to get symbols
* Windows, as usual, has an entirely separate implementation
Lots more fun details and comments can be found in the source itself.
Closes#10128
Most IO related functions return an IoResult so that the caller can handle failure in whatever way is appropriate. However, the `lines`, `bytes`, and `chars` iterators all supress errors. This means that code that needs to handle errors can't use any of these iterators. All three of these iterators were updated to produce IoResults.
Fixes#12368
If a TTY fails to get initialized, it still needs to have uv_close invoked on
it. This fixes the problem by constructing the TtyWatcher struct before the call
to uv_tty_init. The struct has a destructor on it which will close the handle
properly.
Closes#12666
Most IO related functions return an IoResult so that the caller can handle failure
in whatever way is appropriate. However, the `lines`, `bytes`, and `chars` iterators all
supress errors. This means that code that needs to handle errors can't use any of these
iterators. All three of these iterators were updated to produce IoResults.
Fixes#12368
If a TTY fails to get initialized, it still needs to have uv_close invoked on
it. This fixes the problem by constructing the TtyWatcher struct before the call
to uv_tty_init. The struct has a destructor on it which will close the handle
properly.
Closes#12666