Handle error body in generator layout
Fixes#111468
I feel like making this query return `Option<GeneratorLayout>` might be better but had some issues with that approach
Error message all end up passing into a function as an `impl
Into<{D,Subd}iagnosticMessage>`. If an error message is creatd as
`&format("...")` that means we allocate a string (in the `format!`
call), then take a reference, and then clone (allocating again) the
reference to produce the `{D,Subd}iagnosticMessage`, which is silly.
This commit removes the leading `&` from a lot of these cases. This
means the original `String` is moved into the
`{D,Subd}iagnosticMessage`, avoiding the double allocations. This
requires changing some function argument types from `&str` to `String`
(when all arguments are `String`) or `impl
Into<{D,Subd}iagnosticMessage>` (when some arguments are `String` and
some are `&str`).
Move expansion of query macros in rustc_middle to rustc_middle::query
This moves the expansion of `define_callbacks!` and `define_feedable!` from `rustc_middle::ty::query` to `rustc_middle::query`.
This means that types used in queries are both imported and used in `rustc_middle::query` instead of being split between these modules. It also decouples `rustc_middle::ty::query` further from `rustc_middle` which is helpful since we want to move `rustc_middle::ty::query` to the query system crates.
Rename const error methods for consistency
renames `ty::Const`'s methods for creating a `ConstKind::Error` to be in the same naming style as `ty::Ty`'s equivalent methods.
r? `@BoxyUwU`
use implied bounds when checking opaque types
During opaque type inference, we check for the well-formedness of the hidden type in the opaque type's own environment, not the one of the defining site, which are different in the case of TAIT.
However in the case of associated-type-impl-trait, we don't use implied bounds from the impl header. This caused us to reject the following:
```rust
trait Service<Req> {
type Output;
fn call(req: Req) -> Self::Output;
}
impl<'a, Req> Service<&'a Req> for u8 {
type Output= impl Sized; // we can't prove WF of hidden type `WF(&'a Req)` although it's implied by the impl
//~^ ERROR type parameter Req doesn't live long enough
fn call(req: &'a Req) -> Self::Output {
req
}
}
```
although adding an explicit bound would make it pass:
```diff
- impl<'a, Req> Service<&'a Req> for u8 {
+ impl<'a, Req> Service<&'a Req> for u8 where Req: 'a, {
```
I believe it should pass as we already allow the concrete type to be used:
```diff
impl<'a, Req> Service<&'a Req> for u8 {
- type Output= impl Sized;
+ type Output= &'a Req;
```
Fixes#95922
Builds on #105982
cc ``@lcnr`` (because implied bounds)
r? ``@oli-obk``
Various changes to name resolution of anon consts
Sorry this PR is kind of all over the place ^^'
Fixes#111012
- Rewrites anon const nameres to all go through `fn resolve_anon_const` explicitly instead of `visit_anon_const` to ensure that we do not accidentally resolve anon consts as if they are allowed to use generics when they aren't. Also means that we dont have bits of code for resolving anon consts that will get out of sync (i.e. legacy const generics and resolving path consts that were parsed as type arguments)
- Renames two of the `LifetimeRibKind`, `AnonConst -> ConcreteAnonConst` and `ConstGeneric -> ConstParamTy`
- Noticed while doing this that under `generic_const_exprs` all lifetimes currently get resolved to errors without any error being emitted which was causing a bunch of tests to pass without their bugs having been fixed, incidentally fixed that in this PR and marked those tests as `// known-bug:`. I'm fine to break those since `generic_const_exprs` is a very unstable incomplete feature and this PR _does_ make generic_const_exprs "less broken" as a whole, also I can't be assed to figure out what the underlying causes of all of them are. This PR reopens#77357#83993
- Changed `generics_of` to stop providing generics and predicates to enum variant discriminant anon consts since those are not allowed to use generic parameters
- Updated the error for non 'static lifetime in const arguments and the error for non 'static lifetime in const param tys to use `derive(Diagnostic)`
I have a vague idea why const-arg-in-const-arg.rs, in-closure.rs and simple.rs have started failing which is unfortunate since these were deliberately made to work, I think lifetime resolution being broken just means this regressed at some point and nobody noticed because the tests were not testing anything :( I'm fine breaking these too for the same reason as the tests for #77357#83993. I couldn't get `// known-bug` to work for these ICEs and just kept getting different stderr between CI and local `--bless` so I just removed them and will create an issue to track re-adding (and fixing) the bugs if this PR lands.
r? `@cjgillot` cc `@compiler-errors`
Min specialization improvements
- Don't allow specialization impls with no items, such implementations are probably not correct and only occur as mistakes in the compiler and standard library
- Fix a missing normalization call
- Adds spans for lifetime errors from overly general specializations
Closes#79457Closes#109815
Introduce `AliasKind::Inherent` for inherent associated types
Allows us to check (possibly generic) inherent associated types for well-formedness.
Type inference now also works properly.
Follow-up to #105961. Supersedes #108430.
Fixes#106722.
Fixes#108957.
Fixes#109768.
Fixes#109789.
Fixes#109790.
~Not to be merged before #108860 (`AliasKind::Weak`).~
CC `@jackh726`
r? `@compiler-errors`
`@rustbot` label T-types F-inherent_associated_types
Don't compute trait super bounds unless they're positive
Fixes#111207
The comment is modified to explain the rationale for why we even have this recursive call to supertraits in the first place, which doesn't apply to negative bounds since they don't elaborate at all.
enable `rust_2018_idioms` lint group for doctests
With this change, `rust_2018_idioms` lint group will be enabled for compiler/libstd doctests.
Resolves#106086Resolves#99144
Signed-off-by: ozkanonur <work@onurozkan.dev>
Support return-type bounds on associated methods from supertraits
Support `T: Trait<method(): Bound>` when `method` comes from a supertrait, aligning it with the behavior of associated type bounds (both equality and trait bounds).
The only wrinkle is that I have to extend `super_predicates_that_define_assoc_type` to look for *all* items, not just `AssocKind::Ty`. This will also be needed to support `feature(associated_const_equality)` as well, which is subtly broken when it comes to supertraits, though this PR does not fix those yet. There's a slight chance there's a perf regression here, in which case I guess I could split it out into a separate query.
Use fulfillment to check `Drop` impl compatibility
Use an `ObligationCtxt` to ensure that a `Drop` impl does not have stricter requirements than the ADT that it's implemented for, rather than using a `SimpleEqRelation` to (more or less) syntactically equate predicates on an ADT with predicates on an impl.
r? types
### Some background
The old code reads:
```rust
// An earlier version of this code attempted to do this checking
// via the traits::fulfill machinery. However, it ran into trouble
// since the fulfill machinery merely turns outlives-predicates
// 'a:'b and T:'b into region inference constraints. It is simpler
// just to look for all the predicates directly.
```
I'm not sure what this means, but perhaps in the 8 years since that this comment was written (cc #23638) it's gotten easier to process region constraints after doing fulfillment? I don't know how this logic differs from anything we do in the `compare_impl_item` module. Ironically, later on it says:
```rust
// However, it may be more efficient in the future to batch
// the analysis together via the fulfill (see comment above regarding
// the usage of the fulfill machinery), rather than the
// repeated `.iter().any(..)` calls.
```
Also:
* Removes `SimpleEqRelation` which was far too syntactical in its relation.
* Fixes#110557
Such implementations are usually mistakes and are not used in the
compiler or standard library (after this commit) so forbid them with
`min_specialization`.
Explicitly reject negative and reservation drop impls
Fixes#110858
It doesn't really make sense for a type to have a `!Drop` impl. Or at least, I don't want us to implicitly assign a meaning to it by the way the compiler *currently* handles it (incompletely), and rather I would like to see a PR (or an RFC...) assign a meaning to `!Drop` if we actually wanted one for it.
Implement negative bounds for internal testing purposes
Implements partial support the `!` negative polarity on trait bounds. This is incomplete, but should allow us to at least be able to play with the feature.
Not even gonna consider them as a public-facing feature, but I'm implementing them because would've been nice to have in UI tests, for example in #110671.
Currently a `{D,Subd}iagnosticMessage` can be created from any type that
impls `Into<String>`. That includes `&str`, `String`, and `Cow<'static,
str>`, which are reasonable. It also includes `&String`, which is pretty
weird, and results in many places making unnecessary allocations for
patterns like this:
```
self.fatal(&format!(...))
```
This creates a string with `format!`, takes a reference, passes the
reference to `fatal`, which does an `into()`, which clones the
reference, doing a second allocation. Two allocations for a single
string, bleh.
This commit changes the `From` impls so that you can only create a
`{D,Subd}iagnosticMessage` from `&str`, `String`, or `Cow<'static,
str>`. This requires changing all the places that currently create one
from a `&String`. Most of these are of the `&format!(...)` form
described above; each one removes an unnecessary static `&`, plus an
allocation when executed. There are also a few places where the existing
use of `&String` was more reasonable; these now just use `clone()` at
the call site.
As well as making the code nicer and more efficient, this is a step
towards possibly using `Cow<'static, str>` in
`{D,Subd}iagnosticMessage::{Str,Eager}`. That would require changing
the `From<&'a str>` impls to `From<&'static str>`, which is doable, but
I'm not yet sure if it's worthwhile.
Fix elaboration with associated type bounds
When computing a trait's supertrait predicates, do not add any associated type *trait* bounds to that list of supertrait predicates. This is because supertrait predicates are expected to have the same `Self` type as the trait.
For example, given:
```rust
trait Foo: Bar<Assoc: Send>
```
Before, we would compute that the supertrait predicates of `T: Foo` are `T: Bar` and `<T as Bar>::Assoc: Send`. However, the last bound is a trait predicate for a totally different type than `T`, and existing code that uses supertrait bounds such as vtable construction, closure fn signature deduction, etc. all rely on the invariant that we have a list of predicates for self type `T`.
Fixes#76593
The reason for all the extra diagnostic noise is that we're recomputing predicates with a different filter now. These diagnostics should be deduplicated for any end-user though.
---
This does bring up an interesting question -- is the predicate `<T as Bar>::Assoc: Send` an implied bound of `T: Foo`? Because currently the only bounds implied by a (non-alias) trait are its supertraits. I guess I could fix this too, but it would require even more changes, and I'm inclined to punt this question along.
Add `ConstParamTy` trait
This is a bit sketch, but idk.
r? `@BoxyUwU`
Yet to be done:
- [x] ~~Figure out if it's okay to implement `StructuralEq` for primitives / possibly remove their special casing~~ (it should be okay, but maybe not in this PR...)
- [ ] Maybe refactor the code a little bit
- [x] Use a macro to make impls a bit nicer
Future work:
- [ ] Actually™ use the trait when checking if a `const` generic type is allowed
- [ ] _Really_ refactor the surrounding code
- [ ] Refactor `marker.rs` into multiple modules for each "theme" of markers
Use MIR's `Offset` for pointer `add` too
~~Status: draft while waiting for #110822 to land, since this is built atop that.~~
~~r? `@ghost~~`
Canonical Rust code has mostly moved to `add`/`sub` on pointers, which take `usize`, instead of `offset` which takes `isize`. (And, relatedly, when `sub_ptr` was added it turned out it replaced every single in-tree use of `offset_from`, because `usize` is just so much more useful than `isize` in Rust.)
Unfortunately, `intrinsics::offset` could only accept `*const` and `isize`, so there's a *huge* amount of type conversions back and forth being done. They're identity conversions in the backend, but still end up producing quite a lot of unhelpful MIR.
This PR changes `intrinsics::offset` to accept `*const` *and* `*mut` along with `isize` *and* `usize`. Conveniently, the backends and CTFE already handle this, since MIR's `BinOp::Offset` [already supports all four combinations](adaac6b166/compiler/rustc_const_eval/src/transform/validate.rs (L523-L528)).
To demonstrate the difference, I added some `mir-opt/pre-codegen/` tests around slice indexing. Here's the difference to `[T]::get_mut`, since it uses `<*mut _>::add` internally:
```diff
`@@` -79,30 +70,21 `@@` fn slice_get_mut_usize(_1: &mut [u32], _2: usize) -> Option<&mut u32> {
StorageLive(_12); // scope 3 at $SRC_DIR/core/src/slice/index.rs:LL:COL
StorageLive(_9); // scope 6 at $SRC_DIR/core/src/slice/index.rs:LL:COL
_9 = _8 as *mut u32 (PtrToPtr); // scope 11 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
- StorageLive(_13); // scope 13 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
- _13 = _2 as isize (IntToInt); // scope 13 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
- StorageLive(_14); // scope 15 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
- StorageLive(_15); // scope 15 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
- _15 = _9 as *const u32 (Pointer(MutToConstPointer)); // scope 15 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
- _14 = Offset(move _15, _13); // scope 15 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
- StorageDead(_15); // scope 15 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
- _7 = move _14 as *mut u32 (PtrToPtr); // scope 15 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
- StorageDead(_14); // scope 15 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
- StorageDead(_13); // scope 13 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
+ _7 = Offset(_9, _2); // scope 13 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
StorageDead(_9); // scope 6 at $SRC_DIR/core/src/slice/index.rs:LL:COL
StorageDead(_12); // scope 3 at $SRC_DIR/core/src/slice/index.rs:LL:COL
StorageDead(_11); // scope 3 at $SRC_DIR/core/src/slice/index.rs:LL:COL
```
1c1c8e442a (diff-a841b6a4538657add3f39bc895744331453d0625e7aace128b1f604f0b63c8fdR80)
Add lint to deny diagnostics composed of static strings
r? ghost
I'm hoping to have a lint that semi-automatically converts simple diagnostics such as `struct_span_err(span, "msg").help("msg").span_note(span2, "msg").emit()` to typed session diagnostics. It's quite hacky and not entirely working because of problems with `x fix` but should hopefully help reduce some of the work.
I'm going to start trying to apply what I can from this, but opening this as a draft in case anyone wants to develop on it.
cc #100717
Switch to `EarlyBinder` for `explicit_item_bounds`
Part of the work to finish https://github.com/rust-lang/rust/issues/105779.
This PR adds `EarlyBinder` to the return type of the `explicit_item_bounds` query and removes `bound_explicit_item_bounds`.
r? `@compiler-errors` (hope it's okay to request you, since you reviewed #110299 and #110498😃)
Add `intrinsics::transmute_unchecked`
This takes a whole 3 lines in `compiler/` since it lowers to `CastKind::Transmute` in MIR *exactly* the same as the existing `intrinsics::transmute` does, it just doesn't have the fancy checking in `hir_typeck`.
Added to enable experimenting with the request in <https://github.com/rust-lang/rust/pull/106281#issuecomment-1496648190> and because the portable-simd folks might be interested for dependently-sized array-vector conversions.
It also simplifies a couple places in `core`.
See also https://github.com/rust-lang/rust/pull/108442#issuecomment-1474777273, where `CastKind::Transmute` was added having exactly these semantics before the lang meeting (which I wasn't in) independently expressed interest.
This takes a whole 3 lines in `compiler/` since it lowers to `CastKind::Transmute` in MIR *exactly* the same as the existing `intrinsics::transmute` does, it just doesn't have the fancy checking in `hir_typeck`.
Added to enable experimenting with the request in <https://github.com/rust-lang/rust/pull/106281#issuecomment-1496648190> and because the portable-simd folks might be interested for dependently-sized array-vector conversions.
It also simplifies a couple places in `core`.
Allow to feed a value in another query's cache and remove `WithOptConstParam`
I used it to remove `WithOptConstParam` queries, as an example.
The idea is that a query (here `typeck(function)`) can write into another query's cache (here `type_of(anon const)`). The dependency node for `type_of` would depend on all the current dependencies of `typeck`.
There is still an issue with cycles: if `type_of(anon const)` is accessed before `typeck(function)`, we will still have the usual cycle. The way around this issue is to `ensure` that `typeck(function)` is called before accessing `type_of(anon const)`.
When replayed, we may the following cases:
- `typeck` is green, in that case `type_of` is green too, and all is right;
- `type_of` is green, `typeck` may still be marked as red (it depends on strictly more things than `type_of`) -> we verify that the saved value and the re-computed value of `type_of` have the same hash;
- `type_of` is red, then `typeck` is red -> it's the caller responsibility to ensure `typeck` is recomputed *before* `type_of`.
As `anon consts` have their own `DefPathData`, it's not possible to have the def-id of the anon-const point to something outside the original function, but the general case may have to be resolved before using this device more broadly.
There is an open question about loading from the on-disk cache. If `typeck` is loaded from the on-disk cache, the side-effect does not happen. The regular `type_of` implementation can go and fetch the correct value from the decoded `typeck` results, and the dep-graph will check that the hashes match, but I'm not sure we want to rely on this behaviour.
I specifically allowed to feed the value to `type_of` from inside a call to `type_of`. In that case, the dep-graph will check that the fingerprints of both values match.
This implementation is still very sensitive to cycles, and requires that we call `typeck(function)` before `typeck(anon const)`. The reason is that `typeck(anon const)` calls `type_of(anon const)`, which calls `typeck(function)`, which feeds `type_of(anon const)`, and needs to build the MIR so needs `typeck(anon const)`. The latter call would not cycle, since `type_of(anon const)` has been set, but I'd rather not remove the cycle check.
Substitute missing trait items suggestion correctly
Properly substitute missing item suggestions, so that when they reference generics from their parent trait they actually have the right time for the impl.
Also, some other minor tweaks like using `/* Type */` to signify a GAT's type is actually missing, and fixing generic arg suggestions for GATs in general.
Add `rustc_fluent_macro` to decouple fluent from `rustc_macros`
Fluent, with all the icu4x it brings in, takes quite some time to compile. `fluent_messages!` is only needed in further downstream rustc crates, but is blocking more upstream crates like `rustc_index`. By splitting it out, we allow `rustc_macros` to be compiled earlier, which speeds up `x check compiler` by about 5 seconds (and even more after the needless dependency on `serde_json` is removed from `rustc_data_structures`).
Switch to `EarlyBinder` for `collect_return_position_impl_trait_in_trait_tys`
Part of the work to finish https://github.com/rust-lang/rust/issues/105779.
This PR adds `EarlyBinder` to the return type of the `collect_return_position_impl_trait_in_trait_tys` query and removes `bound_return_position_impl_trait_in_trait_tys`.
r? `@lcnr`
Fluent, with all the icu4x it brings in, takes quite some time to
compile. `fluent_messages!` is only needed in further downstream rustc
crates, but is blocking more upstream crates like `rustc_index`. By
splitting it out, we allow `rustc_macros` to be compiled earlier, which
speeds up `x check compiler` by about 5 seconds (and even more after the
needless dependency on `serde_json` is removed from
`rustc_data_structures`).
Spelling compiler
This is per https://github.com/rust-lang/rust/pull/110392#issuecomment-1510193656
I'm going to delay performing a squash because I really don't expect people to be perfectly happy w/ my changes, I really am a human and I really do make mistakes.
r? Nilstrieb
I'm going to be flying this evening, but I should be able to squash / respond to reviews w/in a day or two.
I tried to be careful about dropping changes to `tests`, afaict only two files had changes that were likely related to the changes for a given commit (this is where not having eagerly squashed should have given me an advantage), but, that said, picking things apart can be error prone.
Remove `TypeSuper{Foldable,Visitable}` impls for `Region`.
These traits exist so that folders/visitors can recurse into types of interest: binders, types, regions, predicates, and consts. But `Region` is non-recursive and cannot contain other types of interest, so its methods in these traits are trivial.
This commit inlines and removes those trivial methods.
r? `@compiler-errors`