This new enum entry was introduced in https://reviews.llvm.org/D122268,
and if I'm reading correctly there's no case where we'd ever encounter
it in our uses of LLVM. To preserve the ability to compile this file
with -Werror -Wswitch we add an explicit case for this entry.
Remove LLVM attribute removal
This was necessary before, because `declare_raw_fn` would always apply
the default optimization attributes to every declared function.
Then `attributes::from_fn_attrs` would have to remove the default
attributes in the case of, e.g. `#[optimize(speed)]` in a `-Os` build.
(see [`src/test/codegen/optimize-attr-1.rs`](03a8cc7df1/src/test/codegen/optimize-attr-1.rs (L33)))
However, every relevant callsite of `declare_raw_fn` (i.e. where we
actually generate code for the function, and not e.g. a call to an
intrinsic, where optimization attributes don't [?] matter)
calls `from_fn_attrs`, so we can remove the attribute setting
from `declare_raw_fn`, and rely on `from_fn_attrs` to apply the correct
attributes all at once.
r? `@ghost` (blocked on #94221)
`@rustbot` label S-blocked
This was necessary before, because `declare_raw_fn` would always apply
the default optimization attributes to every declared function,
and then `attributes::from_fn_attrs` would have to remove the default
attributes in the case of, e.g. `#[optimize(speed)]` in a `-Os` build.
However, every relevant callsite of `declare_raw_fn` (i.e. where we
actually generate code for the function, and not e.g. a call to an
intrinsic, where optimization attributes don't [?] matter)
calls `from_fn_attrs`, so we can simply remove the attribute setting
from `declare_raw_fn`, and rely on `from_fn_attrs` to apply the correct
attributes all at once.
Add MemTagSanitizer Support
Add support for the LLVM [MemTagSanitizer](https://llvm.org/docs/MemTagSanitizer.html).
On hardware which supports it (see caveats below), the MemTagSanitizer can catch bugs similar to AddressSanitizer and HardwareAddressSanitizer, but with lower overhead.
On a tag mismatch, a SIGSEGV is signaled with code SEGV_MTESERR / SEGV_MTEAERR.
# Usage
`-Zsanitizer=memtag -C target-feature="+mte"`
# Comments/Caveats
* MemTagSanitizer is only supported on AArch64 targets with hardware support
* Requires `-C target-feature="+mte"`
* LLVM MemTagSanitizer currently only performs stack tagging.
# TODO
* Tests
* Example
In https://reviews.llvm.org/D114543 the uwtable attribute gained a flag
so that we can ask for sync uwtables instead of async, as the former are
much cheaper. The default is async, so that's what I've done here, but I
left a TODO that we might be able to do better.
While in here I went ahead and dropped support for removing uwtable
attributes in rustc: we never did it, so I didn't write the extra C++
bridge code to make it work. Maybe I should have done the same thing
with the `sync|async` parameter but we'll see.
This doesn't handle `char` because it's a bit awkward to distinguish it
from u32 at this point in codegen.
Note that for some types (like `&Struct` and `&mut Struct`),
we already apply `dereferenceable`, which implies `noundef`,
so the IR does not change.
This agrees with Clang, and avoids an error when using LTO with mixed
C/Rust. LLVM considers different behaviour flags to be a mismatch,
even when the flag value itself is the same.
This also makes the flag setting explicit for all uses of
LLVMRustAddModuleFlag.
RustWrapper: adapt to new AttributeMask API
Upstream LLVM change 9290ccc3c1a1 migrated attribute removal to use
AttributeMask instead of AttrBuilder, so we need to follow suit here.
r? ``@nagisa`` cc ``@nikic``
No functional changes intended.
The LLVM commit
ec501f15a8
removed the signed version of `createExpression`. This adapts the Rust
LLVM wrappers accordingly.
Emit LLVM optimization remarks when enabled with `-Cremark`
The default diagnostic handler considers all remarks to be disabled by
default unless configured otherwise through LLVM internal flags:
`-pass-remarks`, `-pass-remarks-missed`, and `-pass-remarks-analysis`.
This behaviour makes `-Cremark` ineffective on its own.
Fix this by configuring a custom diagnostic handler that enables
optimization remarks based on the value of `-Cremark` option. With
`-Cremark=all` enabling all remarks.
Fixes#90924.
r? `@nikic`
LLVM has built-in heuristics for adding stack canaries to functions. These
heuristics can be selected with LLVM function attributes. This patch adds a
rustc option `-Z stack-protector={none,basic,strong,all}` which controls the use
of these attributes. This gives rustc the same stack smash protection support as
clang offers through options `-fno-stack-protector`, `-fstack-protector`,
`-fstack-protector-strong`, and `-fstack-protector-all`. The protection this can
offer is demonstrated in test/ui/abi/stack-protector.rs. This fills a gap in the
current list of rustc exploit
mitigations (https://doc.rust-lang.org/rustc/exploit-mitigations.html),
originally discussed in #15179.
Stack smash protection adds runtime overhead and is therefore still off by
default, but now users have the option to trade performance for security as they
see fit. An example use case is adding Rust code in an existing C/C++ code base
compiled with stack smash protection. Without the ability to add stack smash
protection to the Rust code, the code base artifacts could be exploitable in
ways not possible if the code base remained pure C/C++.
Stack smash protection support is present in LLVM for almost all the current
tier 1/tier 2 targets: see
test/assembly/stack-protector/stack-protector-target-support.rs. The one
exception is nvptx64-nvidia-cuda. This patch follows clang's example, and adds a
warning message printed if stack smash protection is used with this target (see
test/ui/stack-protector/warn-stack-protector-unsupported.rs). Support for tier 3
targets has not been checked.
Since the heuristics are applied at the LLVM level, the heuristics are expected
to add stack smash protection to a fraction of functions comparable to C/C++.
Some experiments demonstrating how Rust code is affected by the different
heuristics can be found in
test/assembly/stack-protector/stack-protector-heuristics-effect.rs. There is
potential for better heuristics using Rust-specific safety information. For
example it might be reasonable to skip stack smash protection in functions which
transitively only use safe Rust code, or which uses only a subset of functions
the user declares safe (such as anything under `std.*`). Such alternative
heuristics could be added at a later point.
LLVM also offers a "safestack" sanitizer as an alternative way to guard against
stack smashing (see #26612). This could possibly also be included as a
stack-protection heuristic. An alternative is to add it as a sanitizer (#39699).
This is what clang does: safestack is exposed with option
`-fsanitize=safe-stack`.
The options are only supported by the LLVM backend, but as with other codegen
options it is visible in the main codegen option help menu. The heuristic names
"basic", "strong", and "all" are hopefully sufficiently generic to be usable in
other backends as well.
Reviewed-by: Nikita Popov <nikic@php.net>
Extra commits during review:
- [address-review] make the stack-protector option unstable
- [address-review] reduce detail level of stack-protector option help text
- [address-review] correct grammar in comment
- [address-review] use compiler flag to avoid merging functions in test
- [address-review] specify min LLVM version in fortanix stack-protector test
Only for Fortanix test, since this target specifically requests the
`--x86-experimental-lvi-inline-asm-hardening` flag.
- [address-review] specify required LLVM components in stack-protector tests
- move stack protector option enum closer to other similar option enums
- rustc_interface/tests: sort debug option list in tracking hash test
- add an explicit `none` stack-protector option
Revert "set LLVM requirements for all stack protector support test revisions"
This reverts commit a49b74f92a4e7d701d6f6cf63d207a8aff2e0f68.
`Module::getOrInsertGlobal` returns a `Constant*`, which is a super
class of `GlobalVariable`, but if the given type doesn't match an
existing declaration, it returns a bitcast of that global instead.
This causes UB when we pass that to `LLVMGetVisibility` which
unconditionally casts the opaque argument to a `GlobalValue*`.
Instead, we can do our own get-or-insert without worrying whether
existing types match exactly. It's not relevant when we're just trying
to get/set the linkage and visibility, and if types are needed we can
bitcast or error nicely from `rustc_codegen_llvm` instead.
The default diagnostic handler considers all remarks to be disabled by
default unless configured otherwise through LLVM internal flags:
`-pass-remarks`, `-pass-remarks-missed`, and `-pass-remarks-analysis`.
This behaviour makes `-Cremark` ineffective on its own.
Fix this by configuring a custom diagnostic handler that enables
optimization remarks based on the value of `-Cremark` option. With
`-Cremark=all` enabling all remarks.
Implement `#[link_ordinal(n)]`
Allows the use of `#[link_ordinal(n)]` with `#[link(kind = "raw-dylib")]`, allowing Rust to link against DLLs that export symbols by ordinal rather than by name. As long as the ordinal matches, the name of the function in Rust is not required to match the name of the corresponding function in the exporting DLL.
Part of #58713.
No functional changes intended.
The LLVM commit
e463b69736
changed an argument of fatal_error_handler_t from std::string to char*.
This adapts RustWrapper accordingly.
These were deleted in https://reviews.llvm.org/D108614, and in C++ I
definitely see the argument for their removal. I didn't try and
propagate the changes up into higher layers of rustc in this change
because my initial goal was to get rustc working against LLVM HEAD
promptly, but I'm happy to follow up with some refactoring to make the
API on the Rust side match the LLVM API more directly (though the way
the enum works in Rust makes the API less scary IMO).
r? @nagisa cc @nikic
The above-mentioned commit (part of the LLVM 14 development cycle)
removes a method that rustc uses somewhat extensively. We mostly switch
to lower-level methods that exist in all versions of LLVM we use, so no
new ifdef logic is required in most cases.
Rather than relying on `getPointerElementType()` from LLVM function
pointers, we now pass the function type explicitly when building `call`
or `invoke` instructions.
This does not yet support #[link_name] attributes on functions, the #[link_ordinal]
attribute, #[link(kind = "raw-dylib")] on extern blocks in bin crates, or
stdcall functions on 32-bit x86.
This commit updates how rustc compiler metadata is stored in rlibs.
Previously metadata was stored as a raw file that has the same format as
`--emit metadata`. After this commit, however, the metadata is encoded
into a small object file which has one section which is the contents of
the metadata.
The motivation for this commit is to fix a common case where #83730
arises. The problem is that when rustc crates a `dylib` crate type it
needs to include entire rlib files into the dylib, so it passes
`--whole-archive` (or the equivalent) to the linker. The problem with
this, though, is that the linker will attempt to read all files in the
archive. If the metadata file were left as-is (today) then the linker
would generate an error saying it can't read the file. The previous
solution was to alter the rlib just before linking, creating a new
archive in a temporary directory which has the metadata file removed.
This problem from before this commit is now removed if the metadata file
is stored in an object file that the linker can read. The only caveat we
have to take care of is to ensure that the linker never actually
includes the contents of the object file into the final output. We apply
similar tricks as the `.llvmbc` bytecode sections to do this.
This involved changing the metadata loading code a bit, namely updating
some of the LLVM C APIs used to use non-deprecated ones and fiddling
with the lifetimes a bit to get everything to work out. Otherwise though
this isn't intended to be a functional change really, only that metadata
is stored differently in archives now.
This should end up fixing #83730 because by default dylibs will no
longer have their rlib dependencies "altered" meaning that
split-debuginfo will continue to have valid paths pointing at the
original rlibs. (note that we still "alter" rlibs if LTO is enabled to
remove Rust object files and we also "alter" for the #[link(cfg)]
feature, but that's rarely used).
Closes#83730
This lets me build against llvm/main as of March 23rd, 2021. I'm not
entirely sure this is _correct_, but it appears to be functionally
identical to what was done in LLVM: existing callsites of
setInlineAsmDiagnosticHandler were moved to SetDiagnosticHandler() on
the context object, which we already set up in both places that we
called setInlineAsmDiagnosticHandler().
`fast-math` implies things like functions not being able to accept as an
argument or return as a result, say, `inf` which made these functions
confusingly named or behaving incorrectly, depending on how you
interpret it. Since the time when these intrinsics have been implemented
the intrinsics user's (stdsimd) approach has changed significantly and
so now it is required that these intrinsics operate normally rather than
in "whatever" way.
Fixes#84268
This should have no real effect in most cases, as e.g. `hidden`
visibility already implies `dso_local` (or at least LLVM IR does not
preserve the `dso_local` setting if the item is already `hidden`), but
it should fix `-Crelocation-model=static` and improve codegen in
executables.
Note that this PR does not exhaustively port the logic in [clang]. Only
the obviously correct portion and what is necessary to fix a regression
from LLVM 12 that relates to `-Crelocation_model=static`.
Fixes#83335
[clang]: 3001d080c8/clang/lib/CodeGen/CodeGenModule.cpp (L945-L1039)