We're going to have more modules under lint, and the paths get unwieldy. We
also plan to have lints run at multiple points in the compilation pipeline.
The aim of these changes is not working out a generic bi-endianness architectures support but to allow people develop for little endian MIPS machines (issue #7190).
This commit makes several changes to the stability index infrastructure:
* Stability levels are now inherited lexically, i.e., each item's
stability level becomes the default for any nested items.
* The computed stability level for an item is stored as part of the
metadata. When using an item from an external crate, this data is
looked up and cached.
* The stability lint works from the computed stability level, rather
than manual stability attribute annotations. However, the lint still
checks only a limited set of item uses (e.g., it does not check every
component of a path on import). This will be addressed in a later PR,
as part of issue #8962.
* The stability lint only applies to items originating from external
crates, since the stability index is intended as a promise to
downstream crates.
* The "experimental" lint is now _allow_ by default. This is because
almost all existing crates have been marked "experimental", pending
library stabilization. With inheritance in place, this would generate
a massive explosion of warnings for every Rust program.
The lint should be changed back to deny-by-default after library
stabilization is complete.
* The "deprecated" lint still warns by default.
The net result: we can begin tracking stability index for the standard
libraries as we stabilize, without impacting most clients.
Closes#13540.
This commit disables rustc's emission of rpath attributes into dynamic libraries
and executables by default. The functionality is still preserved, but it must
now be manually enabled via a `-C rpath` flag.
This involved a few changes to the local build system:
* --disable-rpath is now the default configure option
* Makefiles now prefer our own LD_LIBRARY_PATH over the user's LD_LIBRARY_PATH
in order to support building rust with rust already installed.
* The compiletest program was taught to correctly pass through the aux dir as a
component of LD_LIBRARY_PATH in more situations.
The major impact of this change is that neither rustdoc nor rustc will work
out-of-the-box in all situations because they are dynamically linked. It must be
arranged to ensure that the libraries of a rust installation are part of the
LD_LIBRARY_PATH. The default installation paths for all platforms ensure this,
but if an installation is in a nonstandard location, then configuration may be
necessary.
Additionally, for all developers of rustc, it will no longer be possible to run
$target/stageN/bin/rustc out-of-the-box. The old behavior can be regained
through the `--enable-rpath` option to the configure script.
This change brings linux/mac installations in line with windows installations
where rpath is not possible.
Closes#11747
[breaking-change]
This obsoletes the old `to_err_msg` method. Replace
println!("Error: {}", failure.to_err_msg())
let string = failure.to_err_msg();
with
println!("Error: {}", failure)
let string = failure.to_str();
[breaking-change]
only known post-monomorphization, and report `transmute` errors before
the code is generated for that `transmute`.
This can break code that looked like:
unsafe fn f<T>(x: T) {
let y: int = transmute(x);
}
Change such code to take a type parameter that has the same size as the
type being transmuted to.
Closes#12898.
[breaking-change]
Adds the option -Zsave-analysis which will dump the results of syntax and type checking into CSV files. These can be interpreted by tools such as DXR to provide semantic information about Rust programs for code search, cross-reference, etc.
Authored by Nick Cameron and Peter Elmers (@pelmers; including enums, type parameters/generics).
The following features have been removed
* box [a, b, c]
* ~[a, b, c]
* box [a, ..N]
* ~[a, ..N]
* ~[T] (as a type)
* deprecated_owned_vector lint
All users of ~[T] should move to using Vec<T> instead.
This completes the last stage of the renaming of the comparison hierarchy of
traits. This change renames TotalEq to Eq and TotalOrd to Ord.
In the future the new Eq/Ord will be filled out with their appropriate methods,
but for now this change is purely a renaming change.
[breaking-change]
This is part of the ongoing renaming of the equality traits. See #12517 for more
details. All code using Eq/Ord will temporarily need to move to Partial{Eq,Ord}
or the Total{Eq,Ord} traits. The Total traits will soon be renamed to {Eq,Ord}.
cc #12517
[breaking-change]
There's a fair number of attributes that have to be whitelisted since
they're either looked for by rustdoc, in trans, or as needed. These can
be cleaned up in the future.
This defers to .fatal and .span_fatal for errors (rather than `fail!`
which prints the ICE message). It also adds the span lookup when an id
doesn't correspond to a block, to show what it is pointing at.
It also makes the argument parser slightly looser, so that passing
`--pretty flowgraph` recognises the `flowgraph` part and suggests to use
an integer.
This plugs a leak where resolve was treating enums defined in parent modules as
in-scope for all children modules when resolving a pattern identifier. This
eliminates the code path in resolve entirely.
If this breaks any existing code, then it indicates that the variants need to be
explicitly imported into the module.
Closes#14221
This plugs a leak where resolve was treating enums defined in parent modules as
in-scope for all children modules when resolving a pattern identifier. This
eliminates the code path in resolve entirely.
If this breaks any existing code, then it indicates that the variants need to be
explicitly imported into the module.
Closes#14221
[breaking-change]
Passing `--pretty flowgraph=<NODEID>` makes rustc print a control flow graph.
In pratice, you will also need to pass the additional option:
`-o <FILE>` to emit output to a `.dot` file for graphviz.
(You can only print the flow-graph for a particular block in the AST.)
----
An interesting implementation detail is the way the code puts both the
node index (`cfg::CFGIndex`) and a reference to the payload
(`cfg::CFGNode`) into the single `Node` type that is used for
labelling and walking the graph. I had once mistakenly thought that I
only wanted the `cfg::CFGNode`, but for labelling, you really want the
cfg index too, rather than e.g. trying to use the `ast::NodeId` as the
label (which breaks down e.g. due to `ast::DUMMY_NODE_ID`).
----
As a drive-by fix, I had to fix `rustc::middle::cfg::construct`
interface to reflect changes that have happened on the master branch
while I was getting this integrated into the compiler. (The next
commit actually adds tests of the `--pretty flowgraph` functionality,
so that should ensure that the `rustc::middle::cfg` code does not go
stale again.)
The core library in theory has 0 dependencies, but in practice it has some in
order for it to be efficient. These dependencies are in the form of the basic
memory operations provided by libc traditionally, such as memset, memcmp, etc.
These functions are trivial to implement and themselves have 0 dependencies.
This commit adds a new crate, librlibc, which will serve the purpose of
providing these dependencies. The crate is never linked to by default, but is
available to be linked to by downstream consumers. Normally these functions are
provided by the system libc, but in other freestanding contexts a libc may not
be available. In these cases, librlibc will suffice for enabling execution with
libcore.
cc #10116
This adds the flag --color, which allows the user to force coloring or
turn it off. The default behavior stays the same as before (colorize, if
output goes to tty).
Why this is beneficial is explained in issue #12881.
Please note that this commit doesn't include any regression tests. I
thought about how I'd write a test for this and it doesn't seem to be
worth the effort to me for a UI change like this.
Fixes#12881.
There's no need to include this specific flag just for android. We can
already deal with what it tries to solve by using -C linker=/path/to/cc
and -C ar=/path/to/ar. The Makefiles for rustc already set this up when
we're crosscompiling.
I did add the flag to compiletest though so it can find gdb. Though, I'm
pretty sure we don't run debuginfo tests on android anyways right now.
[breaking-change]
The goal of this refactoring is to make the rustc driver code easier to understand and use. Since this is as close to an API as we have, I think it is important that it is nice. On getting stuck in, I found that there wasn't as much to change as I'd hoped to make the stage... fns easier to use by tools.
This patch only moves code around - mostly just moving code to different files, but a few extracted method refactorings too. To summarise the changes: I added driver::config which handles everything about configuring the compiler. driver::session now just defines and builds session objects. I moved driver code from librustc/lib.rs to librustc/driver/mod.rs so all the code is one place. I extracted methods to make emulating the compiler without being the compiler a little easier. Within the driver directory, I moved code around to more logically fit in the modules.
for `~str`/`~[]`.
Note that `~self` still remains, since I forgot to add support for
`Box<self>` before the snapshot.
How to update your code:
* Instead of `~EXPR`, you should write `box EXPR`.
* Instead of `~TYPE`, you should write `Box<Type>`.
* Instead of `~PATTERN`, you should write `box PATTERN`.
[breaking-change]
Currently, rustc requires that a linkage be a product of 100% rlibs or 100%
dylibs. This is to satisfy the requirement that each object appear at most once
in the final output products. This is a bit limiting, and the upcoming libcore
library cannot exist as a dylib, so these rules must change.
The goal of this commit is to enable *some* use cases for mixing rlibs and
dylibs, primarily libcore's use case. It is not targeted at allowing an
exhaustive number of linkage flavors.
There is a new dependency_format module in rustc which calculates what format
each upstream library should be linked as in each output type of the current
unit of compilation. The module itself contains many gory details about what's
going on here.
cc #10729