Allow to feed a value in another query's cache and remove `WithOptConstParam`
I used it to remove `WithOptConstParam` queries, as an example.
The idea is that a query (here `typeck(function)`) can write into another query's cache (here `type_of(anon const)`). The dependency node for `type_of` would depend on all the current dependencies of `typeck`.
There is still an issue with cycles: if `type_of(anon const)` is accessed before `typeck(function)`, we will still have the usual cycle. The way around this issue is to `ensure` that `typeck(function)` is called before accessing `type_of(anon const)`.
When replayed, we may the following cases:
- `typeck` is green, in that case `type_of` is green too, and all is right;
- `type_of` is green, `typeck` may still be marked as red (it depends on strictly more things than `type_of`) -> we verify that the saved value and the re-computed value of `type_of` have the same hash;
- `type_of` is red, then `typeck` is red -> it's the caller responsibility to ensure `typeck` is recomputed *before* `type_of`.
As `anon consts` have their own `DefPathData`, it's not possible to have the def-id of the anon-const point to something outside the original function, but the general case may have to be resolved before using this device more broadly.
There is an open question about loading from the on-disk cache. If `typeck` is loaded from the on-disk cache, the side-effect does not happen. The regular `type_of` implementation can go and fetch the correct value from the decoded `typeck` results, and the dep-graph will check that the hashes match, but I'm not sure we want to rely on this behaviour.
I specifically allowed to feed the value to `type_of` from inside a call to `type_of`. In that case, the dep-graph will check that the fingerprints of both values match.
This implementation is still very sensitive to cycles, and requires that we call `typeck(function)` before `typeck(anon const)`. The reason is that `typeck(anon const)` calls `type_of(anon const)`, which calls `typeck(function)`, which feeds `type_of(anon const)`, and needs to build the MIR so needs `typeck(anon const)`. The latter call would not cycle, since `type_of(anon const)` has been set, but I'd rather not remove the cycle check.
Substitute missing trait items suggestion correctly
Properly substitute missing item suggestions, so that when they reference generics from their parent trait they actually have the right time for the impl.
Also, some other minor tweaks like using `/* Type */` to signify a GAT's type is actually missing, and fixing generic arg suggestions for GATs in general.
Add `rustc_fluent_macro` to decouple fluent from `rustc_macros`
Fluent, with all the icu4x it brings in, takes quite some time to compile. `fluent_messages!` is only needed in further downstream rustc crates, but is blocking more upstream crates like `rustc_index`. By splitting it out, we allow `rustc_macros` to be compiled earlier, which speeds up `x check compiler` by about 5 seconds (and even more after the needless dependency on `serde_json` is removed from `rustc_data_structures`).
Switch to `EarlyBinder` for `collect_return_position_impl_trait_in_trait_tys`
Part of the work to finish https://github.com/rust-lang/rust/issues/105779.
This PR adds `EarlyBinder` to the return type of the `collect_return_position_impl_trait_in_trait_tys` query and removes `bound_return_position_impl_trait_in_trait_tys`.
r? `@lcnr`
Fluent, with all the icu4x it brings in, takes quite some time to
compile. `fluent_messages!` is only needed in further downstream rustc
crates, but is blocking more upstream crates like `rustc_index`. By
splitting it out, we allow `rustc_macros` to be compiled earlier, which
speeds up `x check compiler` by about 5 seconds (and even more after the
needless dependency on `serde_json` is removed from
`rustc_data_structures`).
Spelling compiler
This is per https://github.com/rust-lang/rust/pull/110392#issuecomment-1510193656
I'm going to delay performing a squash because I really don't expect people to be perfectly happy w/ my changes, I really am a human and I really do make mistakes.
r? Nilstrieb
I'm going to be flying this evening, but I should be able to squash / respond to reviews w/in a day or two.
I tried to be careful about dropping changes to `tests`, afaict only two files had changes that were likely related to the changes for a given commit (this is where not having eagerly squashed should have given me an advantage), but, that said, picking things apart can be error prone.
Remove `TypeSuper{Foldable,Visitable}` impls for `Region`.
These traits exist so that folders/visitors can recurse into types of interest: binders, types, regions, predicates, and consts. But `Region` is non-recursive and cannot contain other types of interest, so its methods in these traits are trivial.
This commit inlines and removes those trivial methods.
r? `@compiler-errors`
These traits exist so that folders/visitors can recurse into types of
interest: binders, types, regions, predicates, and consts. But `Region`
is non-recursive and cannot contain other types of interest, so its
methods in these traits are trivial.
This commit inlines and removes those trivial methods.
cleanup our region error API
- require `TypeErrCtxt` to always result in an error, closing #108810
- move `resolve_regions_and_report_errors` to the `ObligationCtxt`
- call `process_registered_region_obligations` in `resolve_regions`
- move `resolve_regions` into the `outlives` submodule
- add `#[must_use]` to functions returning lists of errors
r? types
Erase lifetimes above `ty::INNERMOST` when probing ambiguous types
Turns out that `TyCtxt::replace_escaping_bound_vars_uncached` only erases bound vars exactly at `ty::INNERMOST`, and not everything above. This regresses the suggestions for non-lifetime binders, but oh well, I don't really care about those.
Fixes#110052
I'm surprised the compiler doesn't warn about these. It appears having
an `impl` on a struct is enough to avoid a warning about it never being
constructed.
- require `TypeErrCtxt` to always result in an error
- move `resolve_regions_and_report_errors` to the `ObligationCtxt`
- merge `process_registered_region_obligations` into `resolve_regions`
Make elaboration generic over input
Combines all the `elaborate_*` family of functions into just one, which is an iterator over the same type that you pass in (e.g. elaborating `Predicate` gives `Predicate`s, elaborating `Obligation`s gives `Obligation`s, etc.)
Initial support for return type notation (RTN)
See: https://smallcultfollowing.com/babysteps/blog/2023/02/13/return-type-notation-send-bounds-part-2/
1. Only supports `T: Trait<method(): Send>` style bounds, not `<T as Trait>::method(): Send`. Checking validity and injecting an implicit binder for all of the late-bound method generics is harder to do for the latter.
* I'd add this in a follow-up.
3. ~Doesn't support RTN in general type position, i.e. no `let x: <T as Trait>::method() = ...`~
* I don't think we actually want this.
5. Doesn't add syntax for "eliding" the function args -- i.e. for now, we write `method(): Send` instead of `method(..): Send`.
* May be a hazard if we try to add it in the future. I'll probably add it in a follow-up later, with a structured suggestion to change `method()` to `method(..)` once we add it.
7. ~I'm not in love with the feature gate name 😺~
* I renamed it to `return_type_notation` ✔️
Follow-up PRs will probably add support for `where T::method(): Send` bounds. I'm not sure if we ever want to support return-type-notation in arbitrary type positions. I may also make the bounds require `..` in the args list later.
r? `@ghost`