Some improvements to the async docs
The goal here is to make the docs overall a little bit more comprehensive and add more links between the things.
One thing that's not working yet is the links to the keywords. Somehow I couldn't get them to work.
r? ````@GuillaumeGomez```` do you know how I could get the keyword links to work?
This issue was found by the Wine project and mitigated there [1].
Windows' documented interface for `setsockopt` expects a `BOOL` (a
`typedef` for `int`) for `TCP_NODELAY` [2]. Windows is forgiving and
will accept any positive length and interpret the first byte of
`*option_value` as the value, so this bug does not affect Windows
itself, but does affect systems implementing Windows' interface more
strictly, such as Wine. Wine was previously passing this through to the
host's `setsockopt`, where, e.g., Linux requires that `option_len` be
correct for the chosen option, and `TCP_NODELAY` expects an `int`.
[1]: d6ea38f32d
[2]: https://docs.microsoft.com/en-us/windows/win32/api/winsock/nf-winsock-setsockopt
POSIX allows `getsockopt` to set `*option_len` to a smaller value if
necessary. Windows will set `*option_len` to 1 for boolean options even
when the caller passes a `BOOL` (`int`) with `*option_len` as 4.
Previously `level` was named `opt` and `option_name` was named `val`,
then extra names of `payload` or `slot` were used for the option value.
This change aligns the wrapper parameters with their names in POSIX.
Winsock uses similar but more abbreviated names: `level`, `optname`,
`optval`, `optlen`.
Fix miniz_oxide types showing up in std docs
Fixes#90526.
Thanks to ```````@camelid,``````` I rediscovered `doc(masked)`, allowing us to prevent `miniz_oxide` type to show up in std docs.
r? ```````@notriddle```````
removing architecture requirements for RustyHermit
RustHermit and HermitCore is able to run on aarch64 and x86_64. In the future these operating systems will also support RISC-V. Consequently, the dependency to a specific target should be removed.
The build process of `hermit-abi` fails if the architecture isn't supported.
Add debug assertions to validate NUL terminator in c strings
The `unchecked` variants from the stdlib usually perform the check anyway if debug assertions are on (for example, `unwrap_unchecked`). This PR does the same thing for `CStr` and `CString`, validating the correctness for the NUL byte in debug mode.
Destabilise entry_insert
See: https://github.com/rust-lang/rust/pull/90345
I didn't revert the rename that was done in that PR, I left it as `entry_insert`.
Additionally, before that PR, `VacantEntry::insert_entry` seemingly had no stability attribute on it? I kept the attribute, just made it an unstable one, same as the one on `Entry`.
There didn't seem to be any mention of this in the RELEASES.md, so I don't think there's anything for me to do other than this?
kmc-solid: Use the filesystem thread-safety wrapper
Fixes the thread unsafety of the `std::fs` implementation used by the [`*-kmc-solid_*`](https://doc.rust-lang.org/nightly/rustc/platform-support/kmc-solid.html) Tier 3 targets.
Neither the SOLID filesystem API nor built-in filesystem drivers guarantee thread safety by default. Although this may suffice in general embedded-system use cases, and in fact the API can be used from multiple threads without any problems in many cases, this has been a source of unsoundness in `std::sys::solid::fs`.
This commit updates the implementation to leverage the filesystem thread-safety wrapper (which uses a pluggable synchronization mechanism) to enforce thread safety. This is done by prefixing all paths passed to the filesystem API with `\TS`. (Note that relative paths aren't supported in this platform.)
Add MAIN_SEPARATOR_STR
Currently, if someone needs access to the path separator as a str, they need to go through this mess:
```rust
unsafe {
std::str::from_utf8_unchecked(slice::from_ref(&(MAIN_SEPARATOR as u8)))
}
```
This PR just re-exports an existing path separator str API.
Add documentation to more `From::from` implementations.
For users looking at documentation through IDE popups, this gives them relevant information rather than the generic trait documentation wording “Performs the conversion”. For users reading the documentation for a specific type for any reason, this informs them when the conversion may allocate or copy significant memory versus when it is always a move or cheap copy.
Notes on specific cases:
* The new documentation for `From<T> for T` explains that it is not a conversion at all.
* Also documented `impl<T, U> Into<U> for T where U: From<T>`, the other central blanket implementation of conversion.
* The new documentation for construction of maps and sets from arrays of keys mentions the handling of duplicates. Future work could be to do this for *all* code paths that convert an iterable to a map or set.
* I did not add documentation to conversions of a specific error type to a more general error type.
* I did not add documentation to unstable code.
This change was prepared by searching for the text "From<... for" and so may have missed some cases that for whatever reason did not match. I also looked for `Into` impls but did not find any worth documenting by the above criteria.
RustHermit and HermitCore is able to run on aarch64 and x86_64.
In the future these operating systems will also support RISC-V.
Consequently, the dependency to a specific target should be removed.
Building hermit-abi fails if the architecture isn't supported.
make `Instant::{duration_since, elapsed, sub}` saturating and remove workarounds
This removes all mutex/atomic-based workarounds for non-monotonic clocks and makes the previously panicking methods saturating instead. Additionally `saturating_duration_since` becomes deprecated since `duration_since` now fills that role.
Effectively this moves the fixup from `Instant` construction to the comparisons.
This has some observable effects, especially on platforms without monotonic clocks:
* Incorrectly ordered Instant comparisons no longer panic in release mode. This could hide some programming errors, but since debug mode still panics tests can still catch them.
* `checked_duration_since` will now return `None` in more cases. Previously it only happened when one compared instants obtained in the wrong order or manually created ones. Now it also does on backslides.
* non-monotonic intervals will not be transitive, i.e. `b.duration_since(a) + c.duration_since(b) != c.duration_since(a)`
The upsides are reduced complexity and lower overhead of `Instant::now`.
## Motivation
Currently we must choose between two poisons. One is high worst-case latency and jitter of `Instant::now()` due to explicit synchronization; see #83093 for benchmarks, the worst-case overhead is > 100x. The other is sporadic panics on specific, rare combinations of CPU/hypervisor/operating system due to platform bugs.
Use-cases where low-overhead, fine-grained timestamps are needed - such as syscall tracing, performance profiles or sensor data acquisition (drone flight controllers were mentioned in a libs meeting) in multi-threaded programs - are negatively impacted by the synchronization.
The panics are user-visible (program crashes), hard to reproduce and can be triggered by any dependency that might be using Instants for any reason.
A solution that is fast _and_ doesn't panic is desirable.
----
closes#84448closes#86470