Improve invalid let expression handling
- Move all of the checks for valid let expression positions to parsing.
- Add a field to ExprKind::Let in AST/HIR to mark whether it's in a valid location.
- Suppress some later errors and MIR construction for invalid let expressions.
- Fix a (drop) scope issue that was also responsible for #104172.
Fixes#104172Fixes#104868
There was an incomplete version of the check in parsing and a second
version in AST validation. This meant that some, but not all, invalid
uses were allowed inside macros/disabled cfgs. It also means that later
passes have a hard time knowing when the let expression is in a valid
location, sometimes causing ICEs.
- Add a field to ExprKind::Let in AST/HIR to mark whether it's in a
valid location.
- Suppress later errors and MIR construction for invalid let
expressions.
Improve spans for indexing expressions
fixes#114388
Indexing is similar to method calls in having an arbitrary left-hand-side and then something on the right, which is the main part of the expression. Method calls already have a span for that right part, but indexing does not. This means that long method chains that use indexing have really bad spans, especially when the indexing panics and that span in coverted into a panic location.
This does the same thing as method calls for the AST and HIR, storing an extra span which is then put into the `fn_span` field in THIR.
r? compiler-errors
Indexing is similar to method calls in having an arbitrary
left-hand-side and then something on the right, which is the main part
of the expression. Method calls already have a span for that right part,
but indexing does not. This means that long method chains that use
indexing have really bad spans, especially when the indexing panics and
that span in coverted into a panic location.
This does the same thing as method calls for the AST and HIR, storing an
extra span which is then put into the `fn_span` field in THIR.
It's the same as `Delimiter`, minus the `Invisible` variant. I'm
generally in favour of using types to make impossible states
unrepresentable, but this one feels very low-value, and the conversions
between the two types are annoying and confusing.
Look at the change in `src/tools/rustfmt/src/expr.rs` for an example:
the old code converted from `MacDelimiter` to `Delimiter` and back
again, for no good reason. This suggests the author was confused about
the types.
If a raw string was used in the `env!` invocation, then it should also
be shown in the diagnostic messages as a raw string.
Signed-off-by: David Wood <david@davidtw.co>
Generate `match *self {}` instead of `unsafe { core::intrinsics::unreachable() }`.
This is:
1. safe
2. stable
for the benefit of everyone looking at these derived impls through `cargo expand`.
Both expansions compile to the same code at all optimization levels (including `0`).
Hide `compiler_builtins` in the prelude
This crate is a private implementation detail. We only need to insert it into the crate graph for linking and should not expose any of its public API.
Fixes#113533
This crate is a private implementation detail. We only need to insert it
into the crate graph for linking and should not expose any of its public
API.
Fixes#113533
Syntactically accept `become` expressions (explicit tail calls experiment)
This adds `ast::ExprKind::Become`, implements parsing and properly gates the feature.
cc `@scottmcm`
`#[test]` function signature verification improvements
This PR contains two improvements to the expansion of the `#[test]` macro.
The first one fixes https://github.com/rust-lang/rust/issues/112360 by correctly recovering item statements if the signature verification fails.
The second one forbids non-lifetime generics on `#[test]` functions. These were previously allowed if the function returned `()`, but always caused an inference error:
before:
```text
error[E0282]: type annotations needed
--> src/lib.rs:2:1
|
1 | #[test]
| ------- in this procedural macro expansion
2 | fn foo<T>() {}
| ^^^^^^^^^^^^^^ cannot infer type
```
after:
```text
error: functions used as tests can not have any non-lifetime generic parameters
--> src/lib.rs:2:1
|
2 | fn foo<T>() {}
| ^^^^^^^^^^^^^^
```
Also includes some basic tests for test function signature verification, because I couldn't find any (???) in the test suite.
Use `Cow` in `{D,Subd}iagnosticMessage`.
Each of `{D,Subd}iagnosticMessage::{Str,Eager}` has a comment:
```
// FIXME(davidtwco): can a `Cow<'static, str>` be used here?
```
This commit answers that question in the affirmative. It's not the most compelling change ever, but it might be worth merging.
This requires changing the `impl<'a> From<&'a str>` impls to `impl From<&'static str>`, which involves a bunch of knock-on changes that require/result in call sites being a little more precise about exactly what kind of string they use to create errors, and not just `&str`. This will result in fewer unnecessary allocations, though this will not have any notable perf effects given that these are error paths.
Note that I was lazy within Clippy, using `to_string` in a few places to preserve the existing string imprecision. I could have used `impl Into<{D,Subd}iagnosticMessage>` in various places as is done in the compiler, but that would have required changes to *many* call sites (mostly changing `&format("...")` to `format!("...")`) which didn't seem worthwhile.
r? `@WaffleLapkin`
Inline derived `hash`
Because most of the other derived functions are inlined: `clone`, `default`, `eq`, `partial_cmp`, `cmp`. The exception is `fmt`, but it tends to not be on hot paths as much.
r? `@ghost`
Each of `{D,Subd}iagnosticMessage::{Str,Eager}` has a comment:
```
// FIXME(davidtwco): can a `Cow<'static, str>` be used here?
```
This commit answers that question in the affirmative. It's not the most
compelling change ever, but it might be worth merging.
This requires changing the `impl<'a> From<&'a str>` impls to `impl
From<&'static str>`, which involves a bunch of knock-on changes that
require/result in call sites being a little more precise about exactly
what kind of string they use to create errors, and not just `&str`. This
will result in fewer unnecessary allocations, though this will not have
any notable perf effects given that these are error paths.
Note that I was lazy within Clippy, using `to_string` in a few places to
preserve the existing string imprecision. I could have used `impl
Into<{D,Subd}iagnosticMessage>` in various places as is done in the
compiler, but that would have required changes to *many* call sites
(mostly changing `&format("...")` to `format!("...")`) which didn't seem
worthwhile.
Because most of the other derived functions are inlined: `clone`,
`default`, `eq`, `partial_cmp`, `cmp`. The exception is `fmt`, but it
tends to not be on hot paths as much.
Support #[global_allocator] without the allocator shim
This makes it possible to use liballoc/libstd in combination with `--emit obj` if you use `#[global_allocator]`. This is what rust-for-linux uses right now and systemd may use in the future. Currently they have to depend on the exact implementation of the allocator shim to create one themself as `--emit obj` doesn't create an allocator shim.
Note that currently the allocator shim also defines the oom error handler, which is normally required too. Once `#![feature(default_alloc_error_handler)]` becomes the only option, this can be avoided. In addition when using only fallible allocator methods and either `--cfg no_global_oom_handling` for liballoc (like rust-for-linux) or `--gc-sections` no references to the oom error handler will exist.
To avoid this feature being insta-stable, you will have to define `__rust_no_alloc_shim_is_unstable` to avoid linker errors.
(Labeling this with both T-compiler and T-lang as it originally involved both an implementation detail and had an insta-stable user facing change. As noted above, the `__rust_no_alloc_shim_is_unstable` symbol requirement should prevent unintended dependence on this unstable feature.)
Do not recover when parsing stmt in cfg-eval.
`parse_stmt` does recovery on its own. When parsing the statement fails, we always get `Ok(None)` instead of an `Err` variant with the diagnostic that we can emit.
To avoid this behaviour, we need to opt-out of recovery for cfg_eval.
Fixes https://github.com/rust-lang/rust/issues/105228