Generator drop tracking: improve break and continue handling
This PR fixes two related issues.
One, sometimes break or continue have a block target instead of an expression target. This seems to mainly happen with try blocks. Since the drop tracking analysis only works on expressions, if we see a block target for break or continue, we substitute the last expression of the block as the target instead.
Two, break and continue were incorrectly being treated as the same, so continue would also show up as an exit from the loop or block. This patch corrects the way continue is handled by keeping a stack of loop entry points and uses those to find the target of the continue.
Fixes#93197
r? `@nikomatsakis`
This commit fixes two issues.
One, sometimes break or continue have a block target instead of an
expression target. This seems to mainly happen with try blocks. Since
the drop tracking analysis only works on expressions, if we see a block
target for break or continue, we substitute the last expression of the
block as the target instead.
Two, break and continue were incorrectly being treated as the same, so
continue would also show up as an exit from the loop or block. This
patch corrects the way continue is handled by keeping a stack of loop
entry points and uses those to find the target of the continue.
`Decoder` has two impls:
- opaque: this impl is already partly infallible, i.e. in some places it
currently panics on failure (e.g. if the input is too short, or on a
bad `Result` discriminant), and in some places it returns an error
(e.g. on a bad `Option` discriminant). The number of places where
either happens is surprisingly small, just because the binary
representation has very little redundancy and a lot of input reading
can occur even on malformed data.
- json: this impl is fully fallible, but it's only used (a) for the
`.rlink` file production, and there's a `FIXME` comment suggesting it
should change to a binary format, and (b) in a few tests in
non-fundamental ways. Indeed #85993 is open to remove it entirely.
And the top-level places in the compiler that call into decoding just
abort on error anyway. So the fallibility is providing little value, and
getting rid of it leads to some non-trivial performance improvements.
Much of this commit is pretty boring and mechanical. Some notes about
a few interesting parts:
- The commit removes `Decoder::{Error,error}`.
- `InternIteratorElement::intern_with`: the impl for `T` now has the same
optimization for small counts that the impl for `Result<T, E>` has,
because it's now much hotter.
- Decodable impls for SmallVec, LinkedList, VecDeque now all use
`collect`, which is nice; the one for `Vec` uses unsafe code, because
that gave better perf on some benchmarks.
Fix star handling in block doc comments
Fixes#92872.
Some extra explanation about this PR and why https://github.com/rust-lang/rust/pull/92357 created this regression: when we merge doc comment kinds for example in:
```rust
/// he
/**
* hello
*/
#[doc = "boom"]
```
We don't want to remove the empty lines between them. However, to correctly compute the "horizontal trim", we still need it, so instead, I put back a part of the "vertical trim" directly in the "horizontal trim" computation so it doesn't impact the output buffer but allows us to correctly handle the stars.
r? `@camelid`
Add Attribute::meta_kind
The `AttrItem::meta` function is being called on a lot of places, however almost always the caller is only interested in the `kind` of the result `MetaItem`. Before, the `path` had to be cloned in order to get the kind, now it does not have to be.
There is a larger related "problem". In a lot of places, something wants to know contents of attributes. This is accessed through `Attribute::meta_item_list`, which calls `AttrItem::meta` (now `AttrItem::meta_kind`), among other methods. When this function is called, the meta item list has to be recreated from scratch. Everytime something asks a simple question (like is this item/list of attributes `#[doc(hidden)]`?), the tokens of the attribute(s) are cloned, parsed and the results are allocated on the heap. That seems really unnecessary. What would be the best way to cache this? Turn `meta_item_list` into a query perhaps? Related PR: https://github.com/rust-lang/rust/pull/92227
r? rust-lang/rustdoc
ast: Avoid aborts on fatal errors thrown from mutable AST visitor
Set the node to some dummy value and rethrow the error instead.
When using the old aborting `visit_clobber` in `InvocationCollector::visit_crate` the next tests abort due to fatal errors:
```
ui\modules\path-invalid-form.rs
ui\modules\path-macro.rs
ui\modules\path-no-file-name.rs
ui\parser\issues\issue-5806.rs
ui\parser\mod_file_with_path_attr.rs
```
Follow up to https://github.com/rust-lang/rust/pull/91313.
Remove `SymbolStr`
This was originally proposed in https://github.com/rust-lang/rust/pull/74554#discussion_r466203544. As well as removing the icky `SymbolStr` type, it allows the removal of a lot of `&` and `*` occurrences.
Best reviewed one commit at a time.
r? `@oli-obk`
Stabilise `feature(const_generics_defaults)`
`feature(const_generics_defaults)` is complete implementation wise and has a pretty extensive test suite so I think is ready for stabilisation.
needs stabilisation report and maybe an RFC 😅
r? `@lcnr`
cc `@rust-lang/project-const-generics`
Fix bug with `#[doc]` string single-character last lines
Fixes#90618.
This is because `.iter().all(|c| c == '*')` returns `true` if there is no character checked. And in case the last line has only one character, it simply returns `true`, making the last line behind removed.
TraitKind -> Trait
TyAliasKind -> TyAlias
ImplKind -> Impl
FnKind -> Fn
All `*Kind`s in AST are supposed to be enums.
Tuple structs are converted to braced structs for the types above, and fields are reordered in syntactic order.
Also, mutable AST visitor now correctly visit spans in defaultness, unsafety, impl polarity and constness.
Optimize bidi character detection.
Should fix most of the performance regression of the bidi character detection (#90514), to be confirmed with a perf run.
rustc_ast: Turn `MutVisitor::token_visiting_enabled` into a constant
It's a visitor property rather than something that needs to be determined at runtime
rustc_span: `Ident::invalid` -> `Ident::empty`
The equivalent for `Symbol`s was renamed some time ago (`kw::Invalid` -> `kw::Empty`), and it makes sense to do the same thing for `Ident`s as well.
Revert anon union parsing
Revert PR #84571 and #85515, which implemented anonymous union parsing in a manner that broke the context-sensitivity for the `union` keyword and thus broke stable Rust code.
Fix#88583.
This reverts commit 059b68dd67.
Note that this was manually adjusted to retain some of the refactoring
introduced by commit 059b68dd67, so that it could
likewise retain the correction introduced in commit
5b4bc05fa5
Improve diagnostics for unary plus operators (#88276)
This pull request improves the diagnostics emitted on parsing a unary plus operator. See #88276.
Before:
```
error: expected expression, found `+`
--> src/main.rs:2:13
|
2 | let x = +1;
| ^ expected expression
```
After:
```
error: leading `+` is not supported
--> main.rs:2:13
|
2 | let x = +1;
| ^
| |
| unexpected `+`
| help: try removing the `+`
```
Detect bare blocks with type ascription that were meant to be a `struct` literal
Address part of #34255.
Potential improvement: silence the other knock down errors in `issue-34255-1.rs`.
- [x] Removed `?const` and change uses of `?const`
- [x] Added `~const` to the AST. It is gated behind const_trait_impl.
- [x] Validate `~const` in ast_validation.
- [ ] Add enum `BoundConstness` to the HIR. (With variants `NotConst` and
`ConstIfConst` allowing future extensions)
- [ ] Adjust trait selection and pre-existing code to use `BoundConstness`.
- [ ] Optional steps (*for this PR, obviously*)
- [ ] Fix#88155
- [ ] Do something with constness bounds in chalk
Use if-let guards in the codebase and various other pattern cleanups
Dogfooding if-let guards as experimentation for the feature.
Tracking issue #51114. Conflicts with #87937.
The special case breaks several useful invariants (`ExpnId`s are
globally unique, and never change). This special case
was added back in 2016 in https://github.com/rust-lang/rust/pull/34355
Stabilize "RangeFrom" patterns in 1.55
Implements a partial stabilization of #67264 and #37854.
Reference PR: https://github.com/rust-lang/reference/pull/900
# Stabilization Report
This stabilizes the `X..` pattern, shown as such, offering an exhaustive match for unsigned integers:
```rust
match x as u32 {
0 => println!("zero!"),
1.. => println!("positive number!"),
}
```
Currently if a Rust author wants to write such a match on an integer, they must use `1..={integer}::MAX` . By allowing a "RangeFrom" style pattern, this simplifies the match to not require the MAX path and thus not require specifically repeating the type inside the match, allowing for easier refactoring. This is particularly useful for instances like the above case, where different behavior on "0" vs. "1 or any positive number" is desired, and the actual MAX is unimportant.
Notably, this excepts slice patterns which include half-open ranges from stabilization, as the wisdom of those is still subject to some debate.
## Practical Applications
Instances of this specific usage have appeared in the compiler:
16143d1067/compiler/rustc_middle/src/ty/inhabitedness/mod.rs (L219)673d0db5e3/compiler/rustc_ty_utils/src/ty.rs (L524)
And I have noticed there are also a handful of "in the wild" users who have deployed it to similar effect, especially in the case of rejecting any value of a certain number or greater. It simply makes it much more ergonomic to write an irrefutable match, as done in Katholieke Universiteit Leuven's [SCALE and MAMBA project](05e5db00d5/WebAssembly/scale_std/src/fixed_point.rs (L685-L695)).
## Tests
There were already many tests in [src/test/ui/half-open-range/patterns](90a2e5e3fe/src/test/ui/half-open-range-patterns), as well as [generic pattern tests that test the `exclusive_range_pattern` feature](673d0db5e3/src/test/ui/pattern/usefulness/integer-ranges/reachability.rs), many dating back to the feature's introduction and remaining standing to this day. However, this stabilization comes with some additional tests to explore the... sometimes interesting behavior of interactions with other patterns. e.g. There is, at least, a mild diagnostic improvement in some edge cases, because before now, the pattern `0..=(5+1)` encounters the `half_open_range_patterns` feature gate and can thus emit the request to enable the feature flag, while also emitting the "inclusive range with no end" diagnostic. There is no intent to allow an `X..=` pattern that I am aware of, so removing the flag request is a strict improvement. The arrival of the `J | K` "or" pattern also enables some odd formations.
Some of the behavior tested for here is derived from experiments in this [Playground](https://play.rust-lang.org/?version=nightly&mode=debug&edition=2018&gist=58777b3c715c85165ac4a70d93efeefc) example, linked at https://github.com/rust-lang/rust/issues/67264#issuecomment-812770692, which may be useful to reference to observe the current behavior more closely.
In addition tests constituting an explanation of the "slicing range patterns" syntax issue are included in this PR.
## Desiderata
The exclusive range patterns and half-open range patterns are fairly strongly requested by many authors, as they make some patterns much more natural to write, but there is disagreement regarding the "closed" exclusive range pattern or the "RangeTo" pattern, especially where it creates "off by one" gaps in the presence of a "catch-all" wildcard case. Also, there are obviously no range analyses in place that will force diagnostics for e.g. highly overlapping matches. I believe these should be warned on, ideally, and I think it would be reasonable to consider such a blocker to stabilizing this feature, but there is no technical issue with the feature as-is from the purely syntactic perspective as such overlapping or missed matches can already be generated today with such a catch-all case. And part of the "point" of the feature, at least from my view, is to make it easier to omit wildcard matches: a pattern with such an "open" match produces an irrefutable match and does not need the wild card case, making it easier to benefit from exhaustiveness checking.
## History
- Implemented:
- Partially via exclusive ranges: https://github.com/rust-lang/rust/pull/35712
- Fully with half-open ranges: https://github.com/rust-lang/rust/pull/67258
- Unresolved Questions:
- The precedence concerns of https://github.com/rust-lang/rust/pull/48501 were considered as likely requiring adjustment but probably wanting a uniform consistent change across all pattern styles, given https://github.com/rust-lang/rust/issues/67264#issuecomment-720711656, but it is still unknown what changes might be desired
- How we want to handle slice patterns in ranges seems to be an open question still, as witnessed in the discussion of this PR!
I checked but I couldn't actually find an RFC for this, and given "approved provisionally by lang team without an RFC", I believe this might require an RFC before it can land? Unsure of procedure here, on account of this being stabilizing a subset of a feature of syntax.
r? `@scottmcm`
Fix ICE when `main` is declared in an `extern` block
Changes in #84401 to implement `imported_main` changed how the crate entry point is found, and a declared `main` in an `extern` block was detected erroneously. This was causing the ICE described in #86110.
This PR adds a check for this case and emits an error instead. Previously a `main` declaration in an `extern` block was not detected as an entry point at all, so emitting an error shouldn't break anything that worked previously. In 1.52.1 stable this is demonstrated, with a `` `main` function not found`` error.
Fixes#86110
parser: Ensure that all nonterminals have tokens after parsing
`parse_nonterminal` should always result in something with tokens.
This requirement wasn't satisfied in two cases:
- `stmt` nonterminal with expression statements (e.g. `0`, or `{}`, or `path + 1`) because `fn parse_stmt_without_recovery` forgot to propagate `force_collect` in some cases.
- `expr` nonterminal with expressions with built-in attributes (e.g. `#[allow(warnings)] 0`) due to an incorrect optimization in `fn parse_expr_force_collect`, it assumed that all expressions starting with `#` have their tokens collected during parsing, but that's not true if all the attributes on that expression are built-in and inert.
(Discovered when trying to implement eager `cfg` expansion for all attributes https://github.com/rust-lang/rust/pull/83824#issuecomment-817317170.)
r? `@Aaron1011`
further split up const_fn feature flag
This continues the work on splitting up `const_fn` into separate feature flags:
* `const_fn_trait_bound` for `const fn` with trait bounds
* `const_fn_unsize` for unsizing coercions in `const fn` (looks like only `dyn` unsizing is still guarded here)
I don't know if there are even any things left that `const_fn` guards... at least libcore and liballoc do not need it any more.
`@oli-obk` are you currently able to do reviews?
This PR modifies the macro expansion infrastructure to handle attributes
in a fully token-based manner. As a result:
* Derives macros no longer lose spans when their input is modified
by eager cfg-expansion. This is accomplished by performing eager
cfg-expansion on the token stream that we pass to the derive
proc-macro
* Inner attributes now preserve spans in all cases, including when we
have multiple inner attributes in a row.
This is accomplished through the following changes:
* New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced.
These are very similar to a normal `TokenTree`, but they also track
the position of attributes and attribute targets within the stream.
They are built when we collect tokens during parsing.
An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when
we invoke a macro.
* Token capturing and `LazyTokenStream` are modified to work with
`AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which
is created during the parsing of a nested AST node to make the 'outer'
AST node aware of the attributes and attribute target stored deeper in the token stream.
* When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`),
we tokenize and reparse our target, capturing additional information about the locations of
`#[cfg]` and `#[cfg_attr]` attributes at any depth within the target.
This is a performance optimization, allowing us to perform less work
in the typical case where captured tokens never have eager cfg-expansion run.
Extract attribute name once and match it against symbols that are being
validated, instead of using `Session::check_name` for each symbol
individually.
Assume that all validated attributes are used, instead of marking them
as such, since the attribute check should be exhaustive.
Use AnonConst for asm! constants
This replaces the old system which used explicit promotion. See #83169 for more background.
The syntax for `const` operands is still the same as before: `const <expr>`.
Fixes#83169
Because the implementation is heavily based on inline consts, we suffer from the same issues:
- We lose the ability to use expressions derived from generics. See the deleted tests in `src/test/ui/asm/const.rs`.
- We are hitting the same ICEs as inline consts, for example #78174. It is unlikely that we will be able to stabilize this before inline consts are stabilized.
Found with https://github.com/est31/warnalyzer.
Dubious changes:
- Is anyone else using rustc_apfloat? I feel weird completely deleting
x87 support.
- Maybe some of the dead code in rustc_data_structures, in case someone
wants to use it in the future?
- Don't change rustc_serialize
I plan to scrap most of the json module in the near future (see
https://github.com/rust-lang/compiler-team/issues/418) and fixing the
tests needed more work than I expected.
TODO: check if any of the comments on the deleted code should be kept.
Allow registering tool lints with `register_tool`
Previously, there was no way to add a custom tool prefix, even if the tool
itself had registered a lint:
```rust
#![feature(register_tool)]
#![register_tool(xyz)]
#![warn(xyz::my_lint)]
```
```
$ rustc unknown-lint.rs --crate-type lib
error[E0710]: an unknown tool name found in scoped lint: `xyz::my_lint`
--> unknown-lint.rs:3:9
|
3 | #![warn(xyz::my_lint)]
| ^^^
```
This allows opting-in to lints from other tools using `register_tool`.
cc https://github.com/rust-lang/rust/issues/66079#issuecomment-788589193, ``@chorman0773``
r? ``@petrochenkov``
Extend `proc_macro_back_compat` lint to `procedural-masquerade`
We now lint on *any* use of `procedural-masquerade` crate. While this
crate still exists, its main reverse dependency (`cssparser`) no longer
depends on it. Any crates still depending off should stop doing so, as
it only exists to support very old Rust versions.
If a crate actually needs to support old versions of rustc via
`procedural-masquerade`, then they'll just need to accept the warning
until we remove it entirely (at the same time as the back-compat hack).
The latest version of `procedural-masquerade` does work with the
latest rustc, but trying to check for the version seems like more
trouble than it's worth.
While working on this, I realized that the `proc-macro-hack` check was
never actually doing anything. The corresponding enum variant in
`proc-macro-hack` is named `Value` or `Nested` - it has never been
called `Input`. Due to a strange Crater issue, the Crater run that
tested adding this did *not* end up testing it - some of the crates that
would have failed did not actually have their tests checked, making it
seem as though the `proc-macro-hack` check was working.
The Crater issue is being discussed at
https://rust-lang.zulipchat.com/#narrow/stream/242791-t-infra/topic/Nearly.20identical.20Crater.20runs.20processed.20a.20crate.20differently/near/230406661
Despite the `proc-macro-hack` check not actually doing anything, we
haven't gotten any reports from users about their build being broken.
I went ahead and removed it entirely, since it's clear that no one is
being affected by the `proc-macro-hack` regression in practice.
ast/hir: Rename field-related structures
I always forget what `ast::Field` and `ast::StructField` mean despite working with AST for long time, so this PR changes the naming to less confusing and more consistent.
- `StructField` -> `FieldDef` ("field definition")
- `Field` -> `ExprField` ("expression field", not "field expression")
- `FieldPat` -> `PatField` ("pattern field", not "field pattern")
Various visiting and other methods working with the fields are renamed correspondingly too.
The second commit reduces the size of `ExprKind` by boxing fields of `ExprKind::Struct` in preparation for https://github.com/rust-lang/rust/pull/80080.
Previously, there was no way to add a custom tool prefix, even if the tool
itself had registered a lint:
```
#![feature(register_tool)]
#![register_tool(xyz)]
#![warn(xyz::my_lint)]
```
```
$ rustc unknown-lint.rs --crate-type lib
error[E0710]: an unknown tool name found in scoped lint: `xyz::my_lint`
--> unknown-lint.rs:3:9
|
3 | #![warn(xyz::my_lint)]
| ^^^
```
This allows opting-in to lints from other tools using `register_tool`.
StructField -> FieldDef ("field definition")
Field -> ExprField ("expression field", not "field expression")
FieldPat -> PatField ("pattern field", not "field pattern")
Also rename visiting and other methods working on them.
We now lint on *any* use of `procedural-masquerade` crate. While this
crate still exists, its main reverse dependency (`cssparser`) no longer
depends on it. Any crates still depending off should stop doing so, as
it only exists to support very old Rust versions.
If a crate actually needs to support old versions of rustc via
`procedural-masquerade`, then they'll just need to accept the warning
until we remove it entirely (at the same time as the back-compat hack).
The latest version of `procedural-masquerade` does not work with the
latest rustc, but trying to check for the version seems like more
trouble than it's worth.
While working on this, I realized that the `proc-macro-hack` check was
never actually doing anything. The corresponding enum variant in
`proc-macro-hack` is named `Value` or `Nested` - it has never been
called `Input`. Due to a strange Crater issue, the Crater run that
tested adding this did *not* end up testing it - some of the crates that
would have failed did not actually have their tests checked, making it
seem as though the `proc-macro-hack` check was working.
The Crater issue is being discussed at
https://rust-lang.zulipchat.com/#narrow/stream/242791-t-infra/topic/Nearly.20identical.20Crater.20runs.20processed.20a.20crate.20differently/near/230406661
Despite the `proc-macro-hack` check not actually doing anything, we
haven't gotten any reports from users about their build being broken.
I went ahead and removed it entirely, since it's clear that no one is
being affected by the `proc-macro-hack` regression in practice.