Migrate `codegen_ssa` to diagnostics structs - [Part 1]
Initial migration of `codegen_ssa`. Going to split this crate migration in at least two PRs in order to avoid a huge PR and to quick off some questions around:
1. Translating messages from "external" crates.
2. Interfacing with OS messages.
3. Adding UI tests while migrating diagnostics.
_See comments below._
Remove `mir::CastKind::Misc`
As discussed in #97649 `mir::CastKind::Misc` is not clear, this PR addresses that by creating a new enum variant for every valid cast.
r? ````@oli-obk````
- UPDATE - revert migration of logs
- UPDATE - use derive on LinkRlibError enum
- [Gardening] UPDATE - alphabetically sort fluent_messages
- UPDATE - use PathBuf and unify both AddNativeLibrary to use Display (which is what PathBuf uses when conforming to IntoDiagnosticArg)
- UPDATE - fluent messages sort after rebase
Remove `-Ztime`
Because it has a lot of overlap with `-Ztime-passes` but is generally less useful. Plus some related cleanups.
Best reviewed one commit at a time.
r? `@davidtwco`
The compiler currently has `-Ztime` and `-Ztime-passes`. I've used
`-Ztime-passes` for years but only recently learned about `-Ztime`.
What's the difference? Let's look at the `-Zhelp` output:
```
-Z time=val -- measure time of rustc processes (default: no)
-Z time-passes=val -- measure time of each rustc pass (default: no)
```
The `-Ztime-passes` description is clear, but the `-Ztime` one is less so.
Sounds like it measures the time for the entire process?
No. The real difference is that `-Ztime-passes` prints out info about passes,
and `-Ztime` does the same, but only for a subset of those passes. More
specifically, there is a distinction in the profiling code between a "verbose
generic activity" and an "extra verbose generic activity". `-Ztime-passes`
prints both kinds, while `-Ztime` only prints the first one. (It took me
a close reading of the source code to determine this difference.)
In practice this distinction has low value. Perhaps in the past the "extra
verbose" output was more voluminous, but now that we only print stats for a
pass if it exceeds 5ms or alters the RSS, `-Ztime-passes` is less spammy. Also,
a lot of the "extra verbose" cases are for individual lint passes, and you need
to also use `-Zno-interleave-lints` to see those anyway.
Therefore, this commit removes `-Ztime` and the associated machinery. One thing
to note is that the existing "extra verbose" activities all have an extra
string argument, so the commit adds the ability to accept an extra argument to
the "verbose" activities.
Only export `__tls_*` on wasm32-unknown-unknown.
From talking with `@abrown,` we aren't planning to have hosts call these `__tls_*` functions; instead, TLS initialization will be handled transparently within libc. Consequently, these functions don't need to be exported.
Leave them exported on wasm32-unknown-unknown though, as wasm-bindgen does call them.
From talking with @abrown, we aren't planning to have hosts call these
`__tls_*` functions; instead, TLS initialization will be handled
transparently within libc. Consequently, these functions don't need to
be exported.
Leave them exported on wasm32-unknown-unknown though, as wasm-bindgen
does call them.
Don't export `__wasm_init_memory` on WebAssembly.
Since #72889, the Rust wasm target doesn't use --passive-segments, so remove the `--export=__wasm_init_memory`.
As documented in the [tool-conventions Linking convention], `__wasm_init_memory` is not intended to be exported.
[tool-conventions Linking convention]: 7c064f3048/Linking.md (shared-memory-and-passive-segments)
Since #72889, the Rust wasm target doesn't use --passive-segments, so
remove the `--export=__wasm_init_memory`.
As documented in the [tool-conventions Linking convention],
`__wasm_init_memory` is not intended to be exported.
[tool-conventions Linking convention]: 7c064f3048/Linking.md (shared-memory-and-passive-segments)
`__heap_base` and `__data_end` are exported for use by wasm-bindgen, which
uses the wasm32-unknown-unknown target. On wasm32-wasi, as a step toward
implementing the Canonical ABI, and as an aid to building speicalized WASI
API polyfill wrappers, don't export `__heap_base` and `__data_end` on
wasm32-wasi.
Remove support for legacy PM
This removes support for optimizing with LLVM's legacy pass manager, as well as the unstable `-Znew-llvm-pass-manager` option. We have been defaulting to the new PM since LLVM 13 (except for s390x that waited for 14), and LLVM 15 removed support altogether. The only place we still use the legacy PM is for writing the output file, just like `llc` does.
cc #74705
r? ``@nikic``
Update rustc's information on Android's sanitizers
This patch updates sanitizer support definitions for Android inside the compiler. It also adjusts the logic to make sure no pre-built sanitizer runtime libraries are emitted as these are instead provided dynamically on Android targets.
This patch updates sanitizier support definitions for Android inside the
compiler. It also adjusts the logic to make sure no pre-built sanitizer
runtime libraries are emitted as these are instead provided dynamically
on Android targets.
On later stages, the feature is already stable.
Result of running:
rg -l "feature.let_else" compiler/ src/librustdoc/ library/ | xargs sed -s -i "s#\\[feature.let_else#\\[cfg_attr\\(bootstrap, feature\\(let_else\\)#"
Initial implementation of dyn*
This PR adds extremely basic and incomplete support for [dyn*](https://smallcultfollowing.com/babysteps//blog/2022/03/29/dyn-can-we-make-dyn-sized/). The goal is to get something in tree behind a flag to make collaboration easier, and also to make sure the implementation so far is not unreasonable. This PR does quite a few things:
* Introduce `dyn_star` feature flag
* Adds parsing for `dyn* Trait` types
* Defines `dyn* Trait` as a sized type
* Adds support for explicit casts, like `42usize as dyn* Debug`
* Including const evaluation of such casts
* Adds codegen for drop glue so things are cleaned up properly when a `dyn* Trait` object goes out of scope
* Adds codegen for method calls, at least for methods that take `&self`
Quite a bit is still missing, but this gives us a starting point. Note that this is never intended to become stable surface syntax for Rust, but rather `dyn*` is planned to be used as an implementation detail for async functions in dyn traits.
Joint work with `@nikomatsakis` and `@compiler-errors.`
r? `@bjorn3`
Add support for MIPS VZ ISA extension
[Link to relevant LLVM line where virt extension is specified](83fab8cee9/llvm/lib/Target/Mips/Mips.td (L172-L173))
This has been tested on mips-unknown-linux-musl with a target-cpu that is >= MIPS32 5 and `target-features=+virt`. The example was checked in a disassembler to ensure the correct assembly sequence was being generated using the virtualization instructions.
Needed additional work:
* MIPS is missing from [the Rust reference CPU feature lists](https://doc.rust-lang.org/reference/attributes/codegen.html#available-features)
Example docs for later:
```md
#### `mips` or `mips64`
This platform requires that `#[target_feature]` is only applied to [`unsafe`
functions][unsafe function]. This target's feature support is currently unstable
and must be enabled by `#![feature(mips_target_feature)]` ([Issue #44839])
[Issue #44839]: https://github.com/rust-lang/rust/issues/44839
Further documentation on these features can be found in the [MIPS Instruction Set
Reference Manual], or elsewhere on [mips.com].
[MIPS Instruction Set Reference Manual]: https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00086-2B-MIPS32BIS-AFP-6.06.pdf
[developer.arm.com]: https://www.mips.com/products/architectures/ase/
Feature | Implicitly Enables | Description
---------------|--------------------|-------------------
`fp64` | | 64-bit Floating Point
`msa` | | "MIPS SIMD Architecture"
`virt` | | Virtualization instructions (VZ ASE)
```
If the above is good I can also submit a PR for that if there's interest in documenting it while it's still unstable. Otherwise that can be dropped, I just wrote it before realizing it was possibly not a good idea.
Relevant to #44839
change rlib format to distinguish native dependencies
Another one method to solve problem mentioned in #99429.
Changed .rlib format, it contains all bundled native libraries as archieves.
At link time rlib is unpacked and native dependencies linked separately.
New behavior hidden under separate_native_rlib_dependencies flag.