Fixes#22525
I wasn't sure if I should reuse `write::get_llvm_opt_level` or not. It returns an `llvm::CodeGenOptLevel`, which is the Rust binding for `CodeGenOpt::Level`. `lto.rs` is passing an optlevel to LLVM's `PassManagerBuilder`, which takes an unsigned int. `PassManagerBuilder`'s optlevel uses essentially the same enumeration (i.e. 0-3 with 2 as default), but it's implicit.
aatch's cfg revisions, namely to match expressions
Revise handling of match expressions so that arms branch to next arm.
Update the graphviz tests accordingly.
Fixes#22073. (Includes regression test for the issue.)
RFC 817 is not yet accepted, but I wanted to put this code up so people can see how it works. And to be ready lest it should be accepted.
cc rust-lang/rfcs#817
This is one more step towards completing #13231
This series of commits add support for default trait implementations. The changes in this PR don't break existing code and they are expected to preserve the existing behavior in the compiler as far as built-in bounds checks go.
The PR adds negative implementations of `Send`/`Sync` for some types and it removes the special cases for `Send`/`Sync` during the trait obligations checks. That is, it now fully relies on the traits check rather than lang items.
Once this patch lands and a new snapshot is created, it'll be possible to add default impls for `Send` and `Sync` and remove entirely the use of `BuiltinBound::{BoundSend,BoundSync}` for positive implementations as well.
This PR also removes the restriction on negative implementations. That is, it is now possible to add negative implementations for traits other than `Send`/`Sync`
We already do this for the function arguments, but miss it for the
retslot pointer, which can lead to LLVM assertions because the retslot
has the wrong type.
Fixes#22663
We already do this for the function arguments, but miss it for the
retslot pointer, which can lead to LLVM assertions because the retslot
has the wrong type.
Fixes#22663
In `if loop {} {}`, the `if` is actually unreachable, but we didn't
handle that correctly and when trying to translate the `if` we tried to
branch on the \"return value\" of the loop expression, which is not an
`i1` and therefore triggered an LLVM assertion.
In `if loop {} {}`, the `if` is actually unreachable, but we didn't
handle that correctly and when trying to translate the `if` we tried to
branch on the "return value" of the loop expression, which is not an
`i1` and therefore triggered an LLVM assertion.