This makes it possible to instruct libstd to never touch the signal
handler for `SIGPIPE`, which makes programs pipeable by default (e.g.
with `./your-program | head -n 1`) without `ErrorKind::BrokenPipe`
errors.
Implementation of import_name_type
Fixes#96534 by implementing https://github.com/rust-lang/compiler-team/issues/525
Symbols that are exported or imported from a binary on 32bit x86 Windows can be named in four separate ways, corresponding to the [import name types](https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#import-name-type) from the PE-COFF spec. The exporting and importing binaries must use the same name encoding, otherwise mismatches can lead to link failures due to "missing symbols" or to 0xc0000139 (`STATUS_ENTRYPOINT_NOT_FOUND`) errors when the executable/library is loaded. For details, see the comments on the raw-dylib feature's https://github.com/rust-lang/rust/issues/58713. To generate the correct import libraries for these DLLs, therefore, rustc must know the import name type for each `extern` function, and there is currently no way for users to provide this information.
This change adds a new `MetaNameValueStr` key to the `#[link]` attribute called `import_name_type`, and which accepts one of three values: `decorated`, `noprefix`, and `undecorated`.
A single DLL is likely to export all its functions using the same import type name, hence `import_name_type` is a parameter of `#[link]` rather than being its own attribute that is applied per-function. It is possible to have a single DLL that exports different functions using different import name types, but users could express such cases by providing multiple export blocks for the same DLL, each with a different import name type.
Note: there is a fourth import name type defined in the PE-COFF spec, `IMPORT_ORDINAL`. This case is already handled by the `#[link_ordinal]` attribute. While it could be merged into `import_type_name`, that would not make sense as `#[link_ordinal]` provides per-function information (namely the ordinal itself).
Design decisions (these match the MCP linked above):
* For GNU, `decorated` matches the PE Spec and MSVC rather than the default behavior of `dlltool` (i.e., there will be a leading `_` for `stdcall`).
* If `import_name_type` is not present, we will keep our current behavior of matching the environment (MSVC vs GNU) default for decorating.
* Using `import_name_type` on architectures other than 32bit x86 will result in an error.
* Using `import_name_type` with link kinds other than `"raw-dylib"` will result in an error.
Diagnostics migr const eval
This PR should eventually contain all diagnostic migrations for the `rustc_const_eval` crate.
r? `@davidtwco`
`@rustbot` label +A-translation
session: stabilize split debuginfo on linux
Stabilize the `-Csplit-debuginfo` flag...
- ...on Linux for all values of the flag. Split DWARF has been implemented for a few months, hasn't had any bug reports and has had some promising benchmarking for incremental debug build performance.
- ..on other platforms for the default value. It doesn't make any sense that `-Csplit-debuginfo=packed` is unstable on Windows MSVC when that's the default behaviour, but keep the other values unstable.
Stabilize the `-Csplit-debuginfo` flag...
- ...on Linux for all values of the flag. Split DWARF has been
implemented for a few months, hasn't had any bug reports and has had
some promising benchmarking for incremental debug build performance.
- ..on other platforms for the default value. It doesn't make any sense
that `-Csplit-debuginfo=packed` is unstable on Windows MSVC when
that's the default behaviour, but keep the other values unstable.
Signed-off-by: David Wood <david.wood@huawei.com>
`-Z location-detail`: provide option to disable all location details
As reported [here](https://github.com/rust-lang/rust/pull/89920#issuecomment-1190598924), when I first implemented the `-Z location-detail` flag there was a bug, where passing an empty list was not correctly supported, and instead rejected by the compiler. This PR fixes that such that passing an empty list results in no location details being tracked, as originally specified in https://github.com/rust-lang/rfcs/pull/2091 .
This PR also adds a test case to verify that this option continues to work as intended.
Remove implicit names and values from `--cfg` in `--check-cfg`
This PR remove the implicit names and values from `--cfg` in `--check-cfg` because the behavior is quite surprising but also because it's really easy to inadvertently really on the implicitness and when the `--cfg` is not set anymore to have an unexpected warning from an unexpected condition that pass with the implicitness.
This change in behavior will also enable us to warn when an unexpected `--cfg` is passed, ex: the user wrote `--cfg=unstabl` instead of `--cfg=unstable`. The implementation of the warning will be done in a follow-up PR.
cc `@petrochenkov`
proc_macro: use crossbeam channels for the proc_macro cross-thread bridge
This is done by having the crossbeam dependency inserted into the `proc_macro` server code from the server side, to avoid adding a dependency to `proc_macro`.
In addition, this introduces a -Z command-line option which will switch rustc to run proc-macros using this cross-thread executor. With the changes to the bridge in #98186, #98187, #98188 and #98189, the performance of the executor should be much closer to same-thread execution.
In local testing, the crossbeam executor was substantially more performant than either of the two existing `CrossThread` strategies, so they have been removed to keep things simple.
r? `@eddyb`
This is done by having the crossbeam dependency inserted into the
proc_macro server code from the server side, to avoid adding a
dependency to proc_macro.
In addition, this introduces a -Z command-line option which will switch
rustc to run proc-macros using this cross-thread executor. With the
changes to the bridge in #98186, #98187, #98188 and #98189, the
performance of the executor should be much closer to same-thread
execution.
In local testing, the crossbeam executor was substantially more
performant than either of the two existing CrossThread strategies, so
they have been removed to keep things simple.
Prior to this fix, `-Z location-detail` provided no mechanism for
disabling all location details. This commit also adds a test case
to verify that this option continues to work as intended, and
clarifies the documentation of this option.
Some command-line options accessible through `sess.opts` are best
accessed through wrapper functions on `Session`, `TyCtxt` or otherwise,
rather than through field access on the option struct in the `Session`.
Adds a new lint which triggers on those options that should be accessed
through a wrapper function so that this is prohibited. Options are
annotated with a new attribute `rustc_lint_opt_deny_field_access` which
can specify the error message (i.e. "use this other function instead")
to be emitted.
A simpler alternative would be to simply rename the options in the
option type so that it is clear they should not be used, however this
doesn't prevent uses, just discourages them. Another alternative would
be to make the option fields private, and adding accessor functions on
the option types, however the wrapper functions sometimes rely on
additional state from `Session` or `TyCtxt` which wouldn't be available
in an function on the option type, so the accessor would simply make the
field available and its use would be discouraged too.
Signed-off-by: David Wood <david.wood@huawei.com>
If an internal lint uses `typeck_results` or similar queries then that
can result in rustdoc checking code that it shouldn't (e.g. from other
platforms) and emit compilation errors.
Signed-off-by: David Wood <david.wood@huawei.com>
Add support for LLVM ShadowCallStack.
LLVMs ShadowCallStack provides backward edge control flow integrity protection by using a separate shadow stack to store and retrieve a function's return address.
LLVM currently only supports this for AArch64 targets. The x18 register is used to hold the pointer to the shadow stack, and therefore this only works on ABIs which reserve x18. Further details are available in the [LLVM ShadowCallStack](https://clang.llvm.org/docs/ShadowCallStack.html) docs.
# Usage
`-Zsanitizer=shadow-call-stack`
# Comments/Caveats
* Currently only enabled for the aarch64-linux-android target
* Requires the platform to define a runtime to initialize the shadow stack, see the [LLVM docs](https://clang.llvm.org/docs/ShadowCallStack.html) for more detail.
Allow to disable thinLTO buffer to support lto-embed-bitcode lld feature
Hello
This change is to fix issue (https://github.com/rust-lang/rust/issues/84395) in which passing "-lto-embed-bitcode=optimized" to lld when linking rust code via linker-plugin-lto doesn't produce the expected result.
Instead of emitting a single unified module into a llvmbc section of the linked elf, it emits multiple submodules.
This is caused because rustc emits the BC modules after running llvm `createWriteThinLTOBitcodePass` pass.
Which in turn triggers a thinLTO linkage and causes the said issue.
This patch allows via compiler flag (-Cemit-thin-lto=<bool>) to select between running `createWriteThinLTOBitcodePass` and `createBitcodeWriterPass`.
Note this pattern of selecting between those 2 passes is common inside of LLVM code.
The default is to match the old behavior.
Adding the option to control from rustc CLI
if the resulted ".o" bitcode module files are with
thinLTO info or regular LTO info.
Allows using "-lto-embed-bitcode=optimized" during linkage
correctly.
Signed-off-by: Ziv Dunkelman <ziv.dunkelman@nextsilicon.com>
Keep unstable target features for asm feature checking
Inline assembly uses the target features to determine which registers
are available on the current target. However it needs to be able to
access unstable target features for this.
Fixes#99071
Inline assembly uses the target features to determine which registers
are available on the current target. However it needs to be able to
access unstable target features for this.
Fixes#99071
DWARF version 5 brings a number of improvements over version 4. Quoting from
the announcement [1]:
> Version 5 incorporates improvements in many areas: better data compression,
> separation of debugging data from executable files, improved description of
> macros and source files, faster searching for symbols, improved debugging
> optimized code, as well as numerous improvements in functionality and
> performance.
On platforms where DWARF version 5 is supported (Linux, primarily), this commit
adds support for it behind a new `-Z dwarf-version=5` flag.
[1]: https://dwarfstd.org/Public_Review.php
Migrate some diagnostics from `rustc_const_eval` to `SessionDiagnostic`
I'm still trying to get the hang of this, so it doesn't migrate _all_ of `rustc_const_eval`. Working on that later.
r? `@davidtwco`
Add a `-Zdump-drop-tracking-cfg` debugging flag
This is useful for debugging drop-tracking; previously, you had to recompile
rustc from source and manually add a call to `write_graph_to_file`. This
makes the option more discoverable and configurable at runtime.
I also took the liberty of making the labels for the CFG nodes much easier to read:
previously, they looked like `id(2), local_id: 48`, now they look like
```
expr from_config (hir_id=HirId { owner: DefId(0:10 ~ default_struct_update[79f9]::foo), local_id: 2})
```
r? ``@eholk``
Rename the `--output-width` flag to `--diagnostic-width` as this appears
to be the preferred name within the compiler team.
Signed-off-by: David Wood <david.wood@huawei.com>
Rename the `--terminal-width` flag to `--output-width` as the behaviour
doesn't just apply to terminals (and so is slightly less accurate).
Signed-off-by: David Wood <david.wood@huawei.com>
Formerly `-Zterminal-width`, `--terminal-width` allows the user or build
tool to inform rustc of the width of the terminal so that diagnostics
can be truncated.
Signed-off-by: David Wood <david.wood@huawei.com>