`Layout` is another type that is sometimes interned, sometimes not, and
we always use references to refer to it so we can't take any advantage
of the uniqueness properties for hashing or equality checks.
This commit renames `Layout` as `LayoutS`, and then introduces a new
`Layout` that is a newtype around an `Interned<LayoutS>`. It also
interns more layouts than before. Previously layouts within layouts
(via the `variants` field) were never interned, but now they are. Hence
the lifetime on the new `Layout` type.
Unlike other interned types, these ones are in `rustc_target` instead of
`rustc_middle`. This reflects the existing structure of the code, which
does layout-specific stuff in `rustc_target` while `TyAndLayout` is
generic over the `Ty`, allowing the type-specific stuff to occur in
`rustc_middle`.
The commit also adds a `HashStable` impl for `Interned`, which was
needed. It hashes the contents, unlike the `Hash` impl which hashes the
pointer.
* Rebase fallout.
* Move rustc_middle::middle::cstore to rustc_session.
* Create more accurate debuginfo for vtables.
Before this commit all vtables would have the same name "vtable" in
debuginfo. Now they get a name that identifies the implementing type
and the trait that is being implemented.
* Remove alloc::prelude
As per the libs team decision in #58935.
Closes#58935
* Make hash_result an Option.
* Properly check `target_features` not to trigger an assertion
* Add LLVM CFI support to the Rust compiler
This commit adds LLVM Control Flow Integrity (CFI) support to the Rust
compiler. It initially provides forward-edge control flow protection for
Rust-compiled code only by aggregating function pointers in groups
identified by their number of arguments.
Forward-edge control flow protection for C or C++ and Rust -compiled
code "mixed binaries" (i.e., for when C or C++ and Rust -compiled code
share the same virtual address space) will be provided in later work as
part of this project by defining and using compatible type identifiers
(see Type metadata in the design document in the tracking issue #89653).
LLVM CFI can be enabled with -Zsanitizer=cfi and requires LTO (i.e.,
-Clto).
* Update to nightly-2021-10-30
* Add deduplication of constant values as rustc relies on LLVM doing that
Co-authored-by: Camille GILLOT <gillot.camille@gmail.com>
Co-authored-by: Michael Woerister <michaelwoerister@posteo>
Co-authored-by: Amanieu d'Antras <amanieu@gmail.com>
Co-authored-by: Yuki Okushi <yuki.okushi@huawei.com>
Co-authored-by: Ramon de C Valle <rcvalle@users.noreply.github.com>
This commit adds LLVM Control Flow Integrity (CFI) support to the Rust
compiler. It initially provides forward-edge control flow protection for
Rust-compiled code only by aggregating function pointers in groups
identified by their number of arguments.
Forward-edge control flow protection for C or C++ and Rust -compiled
code "mixed binaries" (i.e., for when C or C++ and Rust -compiled code
share the same virtual address space) will be provided in later work as
part of this project by defining and using compatible type identifiers
(see Type metadata in the design document in the tracking issue #89653).
LLVM CFI can be enabled with -Zsanitizer=cfi and requires LTO (i.e.,
-Clto).
* Implement `black_box` as intrinsic
Responsibility of implementing the black box is now lies on backend
* Remove some TODOs
* Update to nightly-2021-09-17
* CI: don't fail on warnings