don't allow ZST in ScalarInt
There are several indications that we should not ZST as a ScalarInt:
- We had two ways to have ZST valtrees, either an empty `Branch` or a `Leaf` with a ZST in it.
`ValTree::zst()` used the former, but the latter could possibly arise as well.
- Likewise, the interpreter had `Immediate::Uninit` and `Immediate::Scalar(Scalar::ZST)`.
- LLVM codegen already had to special-case ZST ScalarInt.
So I propose we stop using ScalarInt to represent ZST (which are clearly not integers). Instead, we can add new ZST variants to those types that did not have other variants which could be used for this purpose.
Based on https://github.com/rust-lang/rust/pull/98831. Only the commits starting from "don't allow ZST in ScalarInt" are new.
r? `@oli-obk`
There are several indications that we should not ZST as a ScalarInt:
- We had two ways to have ZST valtrees, either an empty `Branch` or a `Leaf` with a ZST in it.
`ValTree::zst()` used the former, but the latter could possibly arise as well.
- Likewise, the interpreter had `Immediate::Uninit` and `Immediate::Scalar(Scalar::ZST)`.
- LLVM codegen already had to special-case ZST ScalarInt.
So instead add new ZST variants to those types that did not have other variants
which could be used for this purpose.
Clarify MIR semantics of storage statements
Seems worthwhile to start closing out some of the less controversial open questions about MIR semantics. Hopefully this is fairly non-controversial - it's what we implement already, and I see no reason to do anything more restrictive. cc ``@tmiasko`` who commented on this when it was discussed in the original PR that added these docs.
Miscellaneous inlining improvements
Add `#[inline]` to a few trivial non-generic methods from a perf report
that otherwise wouldn't be candidates for inlining.
don't succeed `evaluate_obligation` query if new opaque types were registered
fixes#98608fixes#98604
The root cause of all this is that in type flag computation we entirely ignore nongeneric things like struct fields and the signature of function items. So if a flag had to be set for a struct if it is set for a field, that will only happen if the field is generic, as only the generic parameters are checked.
I now believe we cannot use type flags to handle opaque types. They seem like the wrong tool for this.
Instead, this PR replaces the previous logic by adding a new variant of `EvaluatedToOk`: `EvaluatedToOkModuloOpaqueTypes`, which says that there were some opaque types that got hidden types bound, but that binding may not have been legal (because we don't know if the opaque type was in its defining scope or not).
Highlight conflicting param-env candidates
This could probably be further improved by noting _why_ equivalent param-env candidates (modulo regions) leads to ambiguity.
Fixes#98786
Rollup of 9 pull requests
Successful merges:
- #97917 (Implement ExitCodeExt for Windows)
- #98844 (Reword comments and rename HIR visiting methods.)
- #98979 (interpret: use AllocRange in UninitByteAccess)
- #98986 (Fix missing word in comment)
- #98994 (replace process exit with more detailed exit in src/bootstrap/*.rs)
- #98995 (Add a test for #80471)
- #99002 (suggest adding a derive for #[default] applied to variants)
- #99004 (Add a test for #70408)
- #99017 (Replace boolean argument for print_where_clause with an enum to make code more clear)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
interpret: use AllocRange in UninitByteAccess
also use nice new format string syntax in `interpret/error.rs`, and use the `#` flag to add `0x` prefixes where applicable.
r? ``@oli-obk``
Make lowering a query
Split from https://github.com/rust-lang/rust/pull/88186.
This PR refactors the relationship between lowering and the resolver outputs in order to make lowering itself a query.
In a first part, lowering is changed to avoid modifying resolver outputs, by maintaining its own data structures for creating new `NodeId`s and so.
Then, the `TyCtxt` is modified to allow creating new `LocalDefId`s from inside it. This is done by:
- enclosing `Definitions` in a lock, so as to allow modification;
- creating a query `register_def` whose purpose is to declare a `LocalDefId` to the query system.
See `TyCtxt::create_def` and `TyCtxt::iter_local_def_id` for more detailed explanations of the design.
This makes it possible to mutably borrow different fields of the MIR
body without resorting to methods like `basic_blocks_local_decls_mut_and_var_debug_info`.
To preserve validity of control flow graph caches in the presence of
modifications, a new struct `BasicBlocks` wraps together basic blocks
and control flow graph caches.
The `BasicBlocks` dereferences to `IndexVec<BasicBlock, BasicBlockData>`.
On the other hand a mutable access requires explicit `as_mut()` call.
Do not fetch HIR to compute variances.
Everything can be done using higher-level queries. This simplifies the code, and should allow better incremental caching.