coverage: Count await when the Future is immediately ready
Currently `await` is only counted towards coverage if the containing
function is suspended and resumed at least once. This is because it
expands to code which contains a branch on the discriminant of `Poll`.
By treating it like a branching macro (e.g. `assert!`), these
implementation details will be hidden from the coverage results.
I added a test to ensure the fix works in simple cases, but the heuristic of picking only the first await-related covspan might be unreliable. I plan on testing more thoroughly with a real codebase over the next couple of weeks.
closes#98712
Make `Ty::boxed_ty` return an `Option`
Looks like a good place to use Rust's type system.
---
Most of 4ac7bcbaad/compiler/rustc_middle/src/ty/sty.rs (L971-L1963) looks like it could be moved to `TyKind` (then I guess `Ty` should be made to deref to `TyKind`).
Currently `await` is only counted towards coverage if the containing
function is suspended and resumed at least once. This is because it
expands to code which contains a branch on the discriminant of `Poll`.
By treating it like a branching macro (e.g. `assert!`), these
implementation details will be hidden from the coverage results.
Rename dump of coroutine by-move-body to be more consistent, fix ICE in dump_mir
First, we add a missing match for `DefKind::SyntheticCoroutineBody` in `dump_mir`. Fixes#129703. The second commit (directly below) serves as a test.
Second, we reorder the `dump_mir` in `coroutine_by_move_body_def_id` to be *after* we adjust the body source, and change the disambiguator so it reads more like any other MIR body. This also serves as a test for the ICE, since we're dumping the MIR of a body with `DefKind::SyntheticCoroutineBody`.
Third, we change the parenting of the synthetic MIR body to have the *coroutine-closure* (i.e. async closure) as its parent, so we don't have long strings of `{closure#0}-{closure#0}-{closure#0}`.
try-job: test-various
Move `SanityCheck` and `MirPass`
They are currently in `rustc_middle`. This PR moves them to `rustc_mir_transform`, which makes more sense.
r? ``@cjgillot``
Because that's now the only crate that uses it.
Moving stuff out of `rustc_middle` is always welcome.
I chose to use `impl crate::MirPass`/`impl crate::MirLint` (with
explicit `crate::`) everywhere because that's the only mention of
`MirPass`/`MirLint` used in all of these files. (Prior to this change,
`MirPass` was mostly imported via `use rustc_middle::mir::*` items.)
The actual implementation remains in `rustc_mir_dataflow`, but this
commit moves the `MirPass` impl to `rustc_mir_transform` and changes it
to a `MirLint` (fixing a `FIXME` comment).
(I originally tried moving the full implementation from
`rustc_mir_dataflow` but I had some trait problems with `HasMoveData`
and `RustcPeekAt` and `MaybeLiveLocals`. This commit was much smaller
and simpler, but still will allow some follow-up cleanups.)
Remove `#[macro_use] extern crate tracing`, round 4
Because explicit importing of macros via use items is nicer (more standard and readable) than implicit importing via #[macro_use]. Continuing the work from #124511, #124914, and #125434. After this PR no `rustc_*` crates use `#[macro_use] extern crate tracing` except for `rustc_codegen_gcc` which is a special case and I will do separately.
r? ```@jieyouxu```
Remove `Option<!>` return types.
Several compiler functions have `Option<!>` for their return type. That's odd. The only valid return value is `None`, so why is this type used?
Because it lets you write certain patterns slightly more concisely. E.g. if you have these common patterns:
```
let Some(a) = f() else { return };
let Ok(b) = g() else { return };
```
you can shorten them to these:
```
let a = f()?;
let b = g().ok()?;
```
Huh.
An `Option` return type typically designates success/failure. How should I interpret the type signature of a function that always returns (i.e. doesn't panic), does useful work (modifying `&mut` arguments), and yet only ever fails? This idiom subverts the type system for a cute syntactic trick.
Furthermore, returning `Option<!>` from a function F makes things syntactically more convenient within F, but makes things worse at F's callsites. The callsites can themselves use `?` with F but should not, because they will get an unconditional early return, which is almost certainly not desirable. Instead the return value should be ignored. (Note that some of callsites of `process_operand`, `process_immedate`, `process_assign` actually do use `?`, though the early return doesn't matter in these cases because nothing of significance comes after those calls. Ugh.)
When I first saw this pattern I had no idea how to interpret it, and it took me several minutes of close reading to understand everything I've written above. I even started a Zulip thread about it to make sure I understood it properly. "Save a few characters by introducing types so weird that compiler devs have to discuss it on Zulip" feels like a bad trade-off to me. This commit replaces all the `Option<!>` return values and uses `else`/`return` (or something similar) to replace the relevant `?` uses. The result is slightly more verbose but much easier to understand.
r? ``````@cjgillot``````
Several compiler functions have `Option<!>` for their return type.
That's odd. The only valid return value is `None`, so why is this type
used?
Because it lets you write certain patterns slightly more concisely. E.g.
if you have these common patterns:
```
let Some(a) = f() else { return };
let Ok(b) = g() else { return };
```
you can shorten them to these:
```
let a = f()?;
let b = g().ok()?;
```
Huh.
An `Option` return type typically designates success/failure. How should
I interpret the type signature of a function that always returns (i.e.
doesn't panic), does useful work (modifying `&mut` arguments), and yet
only ever fails? This idiom subverts the type system for a cute
syntactic trick.
Furthermore, returning `Option<!>` from a function F makes things
syntactically more convenient within F, but makes things worse at F's
callsites. The callsites can themselves use `?` with F but should not,
because they will get an unconditional early return, which is almost
certainly not desirable. Instead the return value should be ignored.
(Note that some of callsites of `process_operand`, `process_immedate`,
`process_assign` actually do use `?`, though the early return doesn't
matter in these cases because nothing of significance comes after those
calls. Ugh.)
When I first saw this pattern I had no idea how to interpret it, and it
took me several minutes of close reading to understand everything I've
written above. I even started a Zulip thread about it to make sure I
understood it properly. "Save a few characters by introducing types so
weird that compiler devs have to discuss it on Zulip" feels like a bad
trade-off to me. This commit replaces all the `Option<!>` return values
and uses `else`/`return` (or something similar) to replace the relevant
`?` uses. The result is slightly more verbose but much easier to
understand.
By making it own the index maps, instead of holding references to them.
This requires moving the free function `find_candidate` into
`Candidate::reset_and_find`. It lets the `'alloc` lifetime be removed
everywhere that still has it.
LLVM uses the word "code" to refer to a particular kind of coverage mapping.
This unrelated usage of the word is confusing, and makes it harder to introduce
types whose names correspond to the LLVM classification of coverage kinds.
When deduplicating unreachable blocks, erase the source information.
After deduplication the block conceptually belongs to multiple locations in the source. Although these blocks are unreachable, in #123341 we did come across a real side effect, an unreachable block that survives into the compiled code can cause a debugger to set a breakpoint on the wrong instruction. Erasing the source information ensures that a debugger will never be misled into thinking that the unreachable block is worth setting a breakpoint on, especially after #128627.
Technically we don't need to erase the source information if all the deduplicated blocks have identical source information, but tracking that seems like more effort than it's worth.
I'll let njn redirect this one too. r? `@nnethercote`
Fix projections when parent capture is by-ref but child capture is by-value in the `ByMoveBody` pass
This fixes a somewhat strange bug where we build the incorrect MIR in #129074. This one is weird, but I don't expect it to actually matter in practice since it almost certainly results in a move error in borrowck. However, let's not ICE.
Given the code:
```
#![feature(async_closure)]
// NOT copy.
struct Ty;
fn hello(x: &Ty) {
let c = async || {
*x;
//~^ ERROR cannot move out of `*x` which is behind a shared reference
};
}
fn main() {}
```
The parent coroutine-closure captures `x: &Ty` by-ref, resulting in an upvar of `&&Ty`. The child coroutine captures `x` by-value, resulting in an upvar of `&Ty`. When constructing the by-move body for the coroutine-closure, we weren't applying an additional deref projection to convert the parent capture into the child capture, resulting in an type error in assignment, which is a validation ICE.
As I said above, this only occurs (AFAICT) in code that eventually results in an error, because it is only triggered by HIR that attempts to move a non-copy value out of a ref. This doesn't occur if `Ty` is `Copy`, since we'd instead capture `x` by-ref in the child coroutine.
Fixes#129074
Use `append` instead of `extend(drain(..))`
The first commit adds `IndexVec::append` that forwards to `Vec::append`, and uses it in a couple places.
The second commit updates `indexmap` for its new `IndexMap::append`, and also uses that in a couple places.
These changes are similar to what [`clippy::extend_with_drain`](https://rust-lang.github.io/rust-clippy/master/index.html#/extend_with_drain) would suggest, just for other collection types.
Shrink `TyKind::FnPtr`.
By splitting the `FnSig` within `TyKind::FnPtr` into `FnSigTys` and `FnHeader`, which can be packed more efficiently. This reduces the size of the hot `TyKind` type from 32 bytes to 24 bytes on 64-bit platforms. This reduces peak memory usage by a few percent on some benchmarks. It also reduces cache misses and page faults similarly, though this doesn't translate to clear cycles or wall-time improvements on CI.
r? `@compiler-errors`