Rollup of 5 pull requests
Successful merges:
- #114287 (update overflow handling in the new trait solver)
- #114475 (Migrate GUI colors test to original CSS color format)
- #114482 (Fix ui-fulldeps missing the `internal_features` lint on stage 0)
- #114490 (Fix a typo in the error reporting for sealed traits.)
- #114491 (Rename issue #114423 test files to include context)
r? `@ghost`
`@rustbot` modify labels: rollup
Fix ui-fulldeps missing the `internal_features` lint on stage 0
Similar to #114102, `ui-fulldeps --stage=1` builds using the the stage 0 compiler instead of the stage 1 compiler. That means that the new `internal_features` lint is referencing a lint that does not exist. Gate the flag it properly until the next feature bump.
Maybe we should just add ui-fulldeps stage 1 into CI somewhere so this is flagged before landing.
update overflow handling in the new trait solver
implements https://hackmd.io/QY0dfEOgSNWwU4oiGnVRLw?view. I want to clean up this doc and add it to the rustc-dev-guide, but I think this PR is ready for merge as is, even without the dev-guide entry.
r? `@compiler-errors`
Re-enable atomic loads and stores for all RISC-V targets
This roughly reverts PR https://github.com/rust-lang/rust/pull/66548
Atomic "CAS" are still disabled for targets without the *“A” Standard Extension for Atomic Instructions*. However this extension only adds instructions for operations more complex than simple loads and stores, which are always atomic when aligned.
In the [Unprivileged Spec v. 20191213](https://riscv.org/technical/specifications/) section 2.6 *Load and Store Instructions* of chapter 2 *RV32I Base Integer Instruction Set* (emphasis mine):
> Even when misaligned loads and stores complete successfully, these accesses might run extremely slowly depending on the implementation (e.g., when implemented via an invisible trap). Further-more, whereas **naturally aligned loads and stores are guaranteed to execute atomically**, misaligned loads and stores might not, and hence require additional synchronization to ensure atomicity.
Unfortunately PR https://github.com/rust-lang/rust/pull/66548 did not provide much details on the bug that motivated it, but https://github.com/rust-lang/rust/issues/66240 and https://github.com/rust-lang/rust/issues/85736 appear related and happen with targets that do have the A extension.
Add separate feature gate for async fn track caller
This patch adds a feature gate `async_fn_track_caller` that is separate from `closure_track_caller`. This is to allow enabling `async_fn_track_caller` separately.
Fixes#110009
Improve spans for indexing expressions
fixes#114388
Indexing is similar to method calls in having an arbitrary left-hand-side and then something on the right, which is the main part of the expression. Method calls already have a span for that right part, but indexing does not. This means that long method chains that use indexing have really bad spans, especially when the indexing panics and that span in coverted into a panic location.
This does the same thing as method calls for the AST and HIR, storing an extra span which is then put into the `fn_span` field in THIR.
r? compiler-errors
[rustc_span][perf] Remove unnecessary string joins and allocs.
Comparing vectors of string parts yields the same result but avoids unnecessary `join` and potential allocation for resulting `String`. This code is cold so it's unlikely to have any measurable impact, but considering but since it's also simpler, why not? :)
Lots of tiny incremental simplifications of `EmitterWriter` internals
ignore the first commit, it's https://github.com/rust-lang/rust/pull/114088 squashed and rebased, but it's needed to use to use `derive_setters`, as they need a newer `syn` version.
Then this PR starts out with removing many arguments that are almost always defaulted to `None` or `false` and replace them with builder methods that can set these fields in the few cases that want to set them.
After that it's one commit after the other that removes or merges things until everything becomes some very simple trait objects
Indexing is similar to method calls in having an arbitrary
left-hand-side and then something on the right, which is the main part
of the expression. Method calls already have a span for that right part,
but indexing does not. This means that long method chains that use
indexing have really bad spans, especially when the indexing panics and
that span in coverted into a panic location.
This does the same thing as method calls for the AST and HIR, storing an
extra span which is then put into the `fn_span` field in THIR.
Rework upcasting confirmation to support upcasting to fewer projections in target bounds
This PR implements a modified trait upcasting algorithm that is resilient to changes in the number of associated types in the bounds of the source and target trait objects.
It does this by equating each bound of the target trait ref individually against the bounds of the source trait ref, rather than doing them all together by constructing a new trait object.
#### The new way we do trait upcasting confirmation
1. Equate the target trait object's principal trait ref with one of the supertraits of the source trait object's principal.
fdcab310b2/compiler/rustc_trait_selection/src/traits/select/mod.rs (L2509-L2525)
2. Make sure that every auto trait in the *target* trait object is present in the source trait ref's bounds.
fdcab310b2/compiler/rustc_trait_selection/src/traits/select/mod.rs (L2559-L2562)
3. For each projection in the *target* trait object, make sure there is exactly one projection that equates with it in the source trait ref's bound. If there is more than one, bail with ambiguity.
fdcab310b2/compiler/rustc_trait_selection/src/traits/select/mod.rs (L2526-L2557)
* Since there may be more than one that applies, we probe first to check that there is exactly one, then we equate it outside of a probe once we know that it's unique.
4. Make sure the lifetime of the source trait object outlives the lifetime of the target.
<details>
<summary>Meanwhile, this is how we used to do upcasting:</summary>
1. For each supertrait of the source trait object, take that supertrait, append the source object's projection bounds, and the *target* trait object's auto trait bounds, and make this into a new object type:
d12c6e947c/compiler/rustc_trait_selection/src/traits/select/confirmation.rs (L915-L929)
2. Then equate it with the target trait object:
d12c6e947c/compiler/rustc_trait_selection/src/traits/select/confirmation.rs (L936)
This will be a type mismatch if the target trait object has fewer projection bounds, since we compare the bounds structurally in relate:
d12c6e947c/compiler/rustc_middle/src/ty/relate.rs (L696-L698)
</details>
Fixes#114035
Also fixes#114113, because I added a normalize call in the old solver.
r? types
bootstrap: config: fix version comparison bug
Rust requires a previous version of Rust to build, such as the current version, or the previous version. However, the version comparison logic did not take patch releases into consideration when doing the version comparison for the current branch, e.g. Rust 1.71.1 could not be built by Rust 1.71.0 because it is neither an exact version match, or the previous version.
Adjust the version comparison logic to tolerate mismatches in the patch version.
resolve before canonicalization in new solver, ICE if unresolved
Fold the values with a resolver before canonicalization instead of making it happen within canonicalization.
This allows us to filter trivial region constraints from the external constraints.
r? ``@lcnr``