Split `core::slice` to smaller mods
Unfortunately the `#[lang = "slice"]` is too big (3003 lines), I cannot split it further.
Note for reviewer:
* I split to multiple commits for easier reviewing, but I could git squash them all to one if requested.
* Recommend pulling this change locally and using advanced git diff viewer or this command:
```
git show --reverse --color-moved=dimmed-zebra master..
```
---
I split core/slice/mod.rs to these modules:
* `ascii`: For operations on `[u8]`.
* `cmp`: For comparison operations on `[T]`, like PartialEq and SliceContains impl.
* `index`: For indexing operations like Index/IndexMut and SliceIndex.
* `iter`: For Iterator definitions and implementation on `[T]`.
- `macros`: For iterator! and forward_iterator! macros.
* `raw`: For free function to create `&[T]` or `&mut [T]` from pointer + length or a reference.
The heapsort wrapper in mod.rs is removed in favor of reexport from `sort::heapsort`.
Optimize behavior of vec.split_off(0) (take all)
Optimization improvement to `split_off()` so the performance meets the
intuitively expected behavior when `at == 0`, avoiding the current behavior
of copying the entire vector.
The change honors documented behavior that the original vector's
"previous capacity unchanged".
This improvement better supports the pattern for building and flushing a
buffer of elements, such as the following:
```rust
let mut vec = Vec::new();
loop {
vec.push(something);
if condition_is_met {
process(vec.split_off(0));
}
}
```
`Option` wrapping is the first alternative I thought of, but is much
less obvious and more verbose:
```rust
let mut capacity = 1;
let mut vec: Option<Vec<Stuff>> = None;
loop {
vec.get_or_insert_with(|| Vec::with_capacity(capacity)).push(something);
if condition_is_met {
capacity = vec.capacity();
process(vec.take().unwrap());
}
}
```
Directly using `mem::replace()` (instead of calling`split_off()`) could work,
but `mem::replace()` is a more advanced tool for Rust developers, and in
this case, I believe developers would assume the standard library should
be sufficient for the purpose described here.
The benefit of the approach to this change is it does not change the
existing API contract, but improves the peformance of `split_off(0)` for
`Vec`, `String` (which delegates `split_off()` to `Vec`), and any other
existing use cases.
This change adds tests to validate the behavior of `split_off()` with
regard to capacity, as originally documented, and confirm that behavior
still holds, when `at == 0`.
The change is an implementation detail, and does not require a
documentation change, but documenting the new behavior as part of its
API contract may benefit future users.
(Let me know if I should make that documentation update.)
Note, for future consideration:
I think it would be helpful to introduce an additional method to `Vec`
(if not also to `String`):
```
pub fn take_all(&mut self) -> Self {
self.split_off(0)
}
```
This would make it more clear how `Vec` supports the pattern, and make
it easier to find, since the behavior is similar to other `take()`
methods in the Rust standard library.
r? `@wesleywiser`
FYI: `@tmandry`
The code in `ucred.rs` is based on the work done in PR 13 in the
tokio-uds repository on GitHub. Link below for reference:
https://github.com/tokio-rs/tokio-uds/pull/13
Credit to Martin Habovštiak (GitHub username Kixunil) and contributors
for this work!
Optimization improvement to `split_off()` so the performance meets the
intuitively expected behavior when `at == 0`, avoiding the current
behavior of copying the entire vector.
The change honors documented behavior that the method leaves the
original vector's "previous capacity unchanged".
This improvement better supports the pattern for building and flushing a
buffer of elements, such as the following:
```rust
let mut vec = Vec::new();
loop {
vec.push(something);
if condition_is_met {
process(vec.split_off(0));
}
}
```
`Option` wrapping is the first alternative I thought of, but is much
less obvious and more verbose:
```rust
let mut capacity = 1;
let mut vec: Option<Vec<Stuff>> = None;
loop {
vec.get_or_insert_with(|| Vec::with_capacity(capacity)).push(something);
if condition_is_met {
capacity = vec.capacity();
process(vec.take().unwrap());
}
}
```
Directly applying `mem::replace()` could work, but `mem::` functions are
typically a last resort, when a developer is actively seeking better
performance than the standard library provides, for example.
The benefit of the approach to this change is it does not change the
existing API contract, but improves the peformance of `split_off(0)` for
`Vec`, `String` (which delegates `split_off()` to `Vec`), and any other
existing use cases.
This change adds tests to validate the behavior of `split_off()` with
regard to capacity, as originally documented, and confirm that behavior
still holds, when `at == 0`.
The change is an implementation detail, and does not require a
documentation change, but documenting the new behavior as part of its
API contract may benefit future users.
(Let me know if I should make that documentation update.)
Note, for future consideration:
I think it would be helpful to introduce an additional method to `Vec`
(if not also to `String`):
```
pub fn take_all(&mut self) -> Self {
self.split_off(0)
}
```
This would make it more clear how `Vec` supports the pattern, and make
it easier to find, since the behavior is similar to other `take()`
methods in the Rust standard library.
Remove internal and unstable MaybeUninit::UNINIT.
Looks like it is no longer necessary, as `uninit_array()` can be used instead in the few cases where it was needed.
(I wanted to just add `#[doc(hidden)]` to remove clutter from the documentation, but looks like it can just be removed entirely.)
Make the following methods unstable const under the `const_pin` feature:
- `new`
- `new_unchecked`
- `into_inner`
- `into_inner_unchecked`
- `get_ref`
- `into_ref`
Also adds tests for these methods in a const context.
Tracking issue: #76654
- Move `held` into the boxed part, since the SRW lock implementation
does not use this. This makes the Mutex 50% smaller.
- Use `Cell` instead of `UnsafeCell` for `held`, such that `.replace()`
can be used.
- Add some comments.
Warn for #[unstable] on trait impls when it has no effect.
Earlier today I sent a PR with an `#[unstable]` attribute on a trait `impl`, but was informed that this attribute has no effect there. (comment: https://github.com/rust-lang/rust/pull/76525#issuecomment-689678895, issue: https://github.com/rust-lang/rust/issues/55436)
This PR adds a warning for this situation. Trait `impl` blocks with `#[unstable]` where both the type and the trait are stable will result in a warning:
```
warning: An `#[unstable]` annotation here has no effect. See issue #55436 <https://github.com/rust-lang/rust/issues/55436> for more information.
--> library/std/src/panic.rs:235:1
|
235 | #[unstable(feature = "integer_atomics", issue = "32976")]
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
```
---
It detects three problems in the existing code:
1. A few `RefUnwindSafe` implementations for the atomic integer types in `library/std/src/panic.rs`. Example:
d92155bf6a/library/std/src/panic.rs (L235-L236)
2. An implementation of `Error` for `LayoutErr` in `library/std/srd/error.rs`:
d92155bf6a/library/std/src/error.rs (L392-L397)
3. `From` implementations for `Waker` and `RawWaker` in `library/alloc/src/task.rs`. Example:
d92155bf6a/library/alloc/src/task.rs (L36-L37)
Case 3 interesting: It has a bound with an `#[unstable]` trait (`W: Wake`), so appears to have much effect on stable code. It does however break similar blanket implementations. It would also have immediate effect if `Wake` was implemented for any stable type. (Which is not the case right now, but there are no warnings in place to prevent it.) Whether this case is a problem or not is not clear to me. If it isn't, adding a simple `c.visit_generics(..);` to this PR will stop the warning for this case.
Make the following methods of `Duration` unstable const under `duration_const_2`:
- `from_secs_f64`
- `from_secs_f32`
- `mul_f64`
- `mul_f32`
- `div_f64`
- `div_f32`
This results in all methods of `Duration` being (unstable) const.
Also adds tests for these methods in a const context, moved the test to `library` as part of #76268.
Possible because of #72449, which made the relevant `f32` and `f64` methods const.
Tracking issue: #72440
Use IOV_MAX and UIO_MAXIOV constants in limit vectored I/O
Also updates the libc dependency to 0.2.77 (from 0.2.74) as the
constants were only recently added.
Related #68042, #75005
r? `@Amanieu` (also reviewed #75005)