Added -Z randomize-layout flag
An implementation of #77316, it currently randomly shuffles the fields of `repr(rust)` types based on their `DefPathHash`
r? ``@eddyb``
Simplify lazy DefPathHash decoding by using an on-disk hash table.
This PR simplifies the logic around mapping `DefPathHash` values encountered during incremental compilation to valid `DefId`s in the current session. It is able to do so by using an on-disk hash table encoding that allows for looking up values directly, i.e. without deserializing the entire table.
The main simplification comes from not having to keep track of `DefPathHashes` being used during the compilation session.
Use a separate interner type for UniqueTypeId
Using symbol::Interner makes it very easy to mixup UniqueTypeId symbols
with the global interner. In fact the Debug implementation of
UniqueTypeId did exactly this.
Using a separate interner type also avoids prefilling the interner with
unused symbols and allow for optimizing the symbol interner for parallel
access without negatively affecting the single threaded module codegen.
Using symbol::Interner makes it very easy to mixup UniqueTypeId symbols
with the global interner. In fact the Debug implementation of
UniqueTypeId did exactly this.
Using a separate interner type also avoids prefilling the interner with
unused symbols and allow for optimizing the symbol interner for parallel
access without negatively affecting the single threaded module codegen.
Split rustc_mir
The `rustc_mir` crate is the second largest in the compiler.
This PR splits it up into 5 crates:
- rustc_borrowck;
- rustc_const_eval;
- rustc_mir_dataflow;
- rustc_mir_transform;
- rustc_monomorphize.
Pin bootstrap checksums and add a tool to update it automatically
⚠️⚠️ This is just a proactive hardening we're performing on the build system, and it's not prompted by any known compromise. If you're aware of security issues being exploited please [check out our responsible disclosure page](https://www.rust-lang.org/policies/security). ⚠️⚠️
---
This PR aims to improve Rust's supply chain security by pinning the checksums of the bootstrap compiler downloaded by `x.py`, preventing a compromised `static.rust-lang.org` from affecting building the compiler. The checksums are stored in `src/stage0.json`, which replaces `src/stage0.txt`. This PR also adds a tool to automatically update the bootstrap compiler.
The changes in this PR were originally discussed in [Zulip](https://zulip-archive.rust-lang.org/stream/241545-t-release/topic/pinning.20stage0.20hashes.html).
## Potential attack
Before this PR, an attacker who wanted to compromise the bootstrap compiler would "just" need to:
1. Gain write access to `static.rust-lang.org`, either by compromising DNS or the underlying storage.
2. Upload compromised binaries and corresponding `.sha256` files to `static.rust-lang.org`.
There is no signature verification in `x.py` as we don't want the build system to depend on GPG. Also, since the checksums were not pinned inside the repository, they were downloaded from `static.rust-lang.org` too: this only protected from accidental changes in `static.rust-lang.org` that didn't change the `*.sha256` files. The attack would allow the attacker to compromise past and future invocations of `x.py`.
## Mitigations introduced in this PR
This PR adds pinned checksums for all the bootstrap components in `src/stage0.json` instead of downloading the checksums from `static.rust-lang.org`. This changes the attack scenario to:
1. Gain write access to `static.rust-lang.org`, either by compromising DNS or the underlying storage.
2. Upload compromised binaries to `static.rust-lang.org`.
3. Land a (reviewed) change in the `rust-lang/rust` repository changing the pinned hashes.
Even with a successful attack, existing clones of the Rust repository won't be affected, and once the attack is detected reverting the pinned hashes changes should be enough to be protected from the attack. This also enables further mitigations to be implemented in following PRs, such as verifying signatures when pinning new checksums (removing the trust on first use aspect of this PR) and adding a check in CI making sure a PR updating the checksum has not been tampered with (see the future improvements section).
## Additional changes
There are additional changes implemented in this PR to enable the mitigation:
* The `src/stage0.txt` file has been replaced with `src/stage0.json`. The reasoning for the change is that there is existing tooling to read and manipulate JSON files compared to the custom format we were using before, and the slight challenge of manually editing JSON files (no comments, no trailing commas) are not a problem thanks to the new `bump-stage0`.
* A new tool has been added to the repository, `bump-stage0`. When invoked, the tool automatically calculates which release should be used as the bootstrap compiler given the current version and channel, gathers all the relevant checksums and updates `src/stage0.json`. The tool can be invoked by running:
```
./x.py run src/tools/bump-stage0
```
* Support for downloading releases from `https://dev-static.rust-lang.org` has been removed, as it's not possible to verify checksums there (it's customary to replace existing artifacts there if a rebuild is warranted). This will require a change to the release process to avoid bumping the bootstrap compiler on beta before the stable release.
## Future improvements
* Add signature verification as part of `bump-stage0`, which would require the attacker to also obtain the release signing keys in order to successfully compromise the bootstrap compiler. This would be fine to add now, as the burden of installing the tool to verify signatures would only be placed on whoever updates the bootstrap compiler, instead of everyone compiling Rust.
* Add a check on CI that ensures the checksums in `src/stage0.json` are the expected ones. If a PR changes the stage0 file CI should also run the `bump-stage0` tool and fail if the output in CI doesn't match the committed file. This prevents the PR author from tweaking the output of the tool manually, which would otherwise be close to impossible for a human to detect.
* Automate creating the PRs bumping the bootstrap compiler, by setting up a scheduled job in GitHub Actions that runs the tool and opens a PR.
* Investigate whether a similar mitigation can be done for "download from CI" components like the prebuilt LLVM.
r? `@Mark-Simulacrum`
Warn when [T; N].into_iter() is ambiguous in the new edition.
Fixes https://github.com/rust-lang/rust/issues/88475
In https://github.com/rust-lang/rust/issues/88475, a situation was found where `[T; N].into_iter()` becomes *ambiguous* in the new edition. This is different than the case where `(&[T; N]).into_iter()` resolves differently, which was the only case handled by the `array_into_iter` lint. This is almost identical to the new-traits-in-the-prelude problem. Effectively, due to the array-into-iter hack disappearing in Rust 2021, we effectively added `IntoIterator` to the 'prelude' in Rust 2021 specifically for arrays.
This modifies the prelude collisions lint to detect that case and emit a `array_into_iter` lint in that case.