This commit removes the `std::local_data` module in favor of a new
`std::thread_local` module providing thread local storage. The module provides
two variants of TLS: one which owns its contents and one which is based on
scoped references. Each implementation has pros and cons listed in the
documentation.
Both flavors have accessors through a function called `with` which yield a
reference to a closure provided. Both flavors also panic if a reference cannot
be yielded and provide a function to test whether an access would panic or not.
This is an implementation of [RFC 461][rfc] and full details can be found in
that RFC.
This is a breaking change due to the removal of the `std::local_data` module.
All users can migrate to the new thread local system like so:
thread_local!(static FOO: Rc<RefCell<Option<T>>> = Rc::new(RefCell::new(None)))
The old `local_data` module inherently contained the `Rc<RefCell<Option<T>>>` as
an implementation detail which must now be explicitly stated by users.
[rfc]: https://github.com/rust-lang/rfcs/pull/461
[breaking-change]
This commit deprecates the `_equiv` family of methods on `HashMap` and
`HashSet` by instead generalizing the "normal" methods like `get` and
`remove` to use the new `std::borrow` infrastructure.
[breaking-change]
This breaks code that referred to variant names in the same namespace as
their enum. Reexport the variants in the old location or alter code to
refer to the new locations:
```
pub enum Foo {
A,
B
}
fn main() {
let a = A;
}
```
=>
```
pub use self::Foo::{A, B};
pub enum Foo {
A,
B
}
fn main() {
let a = A;
}
```
or
```
pub enum Foo {
A,
B
}
fn main() {
let a = Foo::A;
}
```
[breaking-change]
I found some occurrences of "failure" and "fails" in the documentation. I changed them to "panics" if it means a task panic. Otherwise I left it as is, or changed it to "errors" to clearly distinguish them.
Also, I made a minor fix that is breaking the layout of a module page. "Example" is shown in an irrelevant place from the following page: http://doc.rust-lang.org/std/os/index.html
This implements a considerable portion of rust-lang/rfcs#369 (tracked in #18640). Some interpretations had to be made in order to get this to work. The breaking changes are listed below:
[breaking-change]
- `core::num::{Num, Unsigned, Primitive}` have been deprecated and their re-exports removed from the `{std, core}::prelude`.
- `core::num::{Zero, One, Bounded}` have been deprecated. Use the static methods on `core::num::{Float, Int}` instead. There is no equivalent to `Zero::is_zero`. Use `(==)` with `{Float, Int}::zero` instead.
- `Signed::abs_sub` has been moved to `std::num::FloatMath`, and is no longer implemented for signed integers.
- `core::num::Signed` has been removed, and its methods have been moved to `core::num::Float` and a new trait, `core::num::SignedInt`. The methods now take the `self` parameter by value.
- `core::num::{Saturating, CheckedAdd, CheckedSub, CheckedMul, CheckedDiv}` have been removed, and their methods moved to `core::num::Int`. Their parameters are now taken by value. This means that
- `std::time::Duration` no longer implements `core::num::{Zero, CheckedAdd, CheckedSub}` instead defining the required methods non-polymorphically.
- `core::num::{zero, one, abs, signum}` have been deprecated. Use their respective methods instead.
- The `core::num::{next_power_of_two, is_power_of_two, checked_next_power_of_two}` functions have been deprecated in favor of methods defined a new trait, `core::num::UnsignedInt`
- `core::iter::{AdditiveIterator, MultiplicativeIterator}` are now only implemented for the built-in numeric types.
- `core::iter::{range, range_inclusive, range_step, range_step_inclusive}` now require `core::num::Int` to be implemented for the type they a re parametrized over.
Throughout the docs, "failure" was replaced with "panics" if it means a
task panic. Otherwise, it remained as is, or changed to "errors" to
clearly differentiate it from a task panic.
* Renames/deprecates the simplest and most obvious methods
* Adds FIXME(conventions)s for outstanding work
* Marks "handled" methods as unstable
NOTE: the semantics of reserve and reserve_exact have changed!
Other methods have had their semantics changed as well, but in a
way that should obviously not typecheck if used incorrectly.
Lots of work and breakage to come, but this handles most of the core
APIs and most eggregious breakage. Future changes should *mostly* focus on
niche collections, APIs, or simply back-compat additions.
[breaking-change]
This commit renames a number of extension traits for slices and string
slices, now that they have been refactored for DST. In many cases,
multiple extension traits could now be consolidated. Further
consolidation will be possible with generalized where clauses.
The renamings are consistent with the [new `-Prelude`
suffix](https://github.com/rust-lang/rfcs/pull/344). There are probably
a few more candidates for being renamed this way, but that is left for
API stabilization of the relevant modules.
Because this renames traits, it is a:
[breaking-change]
However, I do not expect any code that currently uses the standard
library to actually break.
Closes#17917
* Moves multi-collection files into their own directory, and splits them into seperate files
* Changes exports so that each collection has its own module
* Adds underscores to public modules and filenames to match standard naming conventions
(that is, treemap::{TreeMap, TreeSet} => tree_map::TreeMap, tree_set::TreeSet)
* Renames PriorityQueue to BinaryHeap
* Renames SmallIntMap to VecMap
* Miscellanious fallout fixes
[breaking-change]
As part of the collections reform RFC, this commit removes all collections
traits in favor of inherent methods on collections themselves. All methods
should continue to be available on all collections.
This is a breaking change with all of the collections traits being removed and
no longer being in the prelude. In order to update old code you should move the
trait implementations to inherent implementations directly on the type itself.
Note that some traits had default methods which will also need to be implemented
to maintain backwards compatibility.
[breaking-change]
cc #18424
- The signature of the `*_equiv` methods of `HashMap` and similar structures
have changed, and now require one less level of indirection. Change your code
from:
```
hashmap.find_equiv(&"Hello");
hashmap.find_equiv(&&[0u8, 1, 2]);
```
to:
```
hashmap.find_equiv("Hello");
hashmap.find_equiv(&[0u8, 1, 2]);
```
- The generic parameter `T` of the `Hasher::hash<T>` method have become
`Sized?`. Downstream code must add `Sized?` to that method in their
implementations. For example:
```
impl Hasher<FnvState> for FnvHasher {
fn hash<T: Hash<FnvState>>(&self, t: &T) -> u64 { /* .. */ }
}
```
must be changed to:
```
impl Hasher<FnvState> for FnvHasher {
fn hash<Sized? T: Hash<FnvState>>(&self, t: &T) -> u64 { /* .. */ }
// ^^^^^^
}
```
[breaking-change]
This commit enables implementations of IndexMut for a number of collections,
including Vec, RingBuf, SmallIntMap, TrieMap, TreeMap, and HashMap. At the same
time this deprecates the `get_mut` methods on vectors in favor of using the
indexing notation.
cc #18424
https://github.com/rust-lang/rfcs/pull/221
The current terminology of "task failure" often causes problems when
writing or speaking about code. You often want to talk about the
possibility of an operation that returns a Result "failing", but cannot
because of the ambiguity with task failure. Instead, you have to speak
of "the failing case" or "when the operation does not succeed" or other
circumlocutions.
Likewise, we use a "Failure" header in rustdoc to describe when
operations may fail the task, but it would often be helpful to separate
out a section describing the "Err-producing" case.
We have been steadily moving away from task failure and toward Result as
an error-handling mechanism, so we should optimize our terminology
accordingly: Result-producing functions should be easy to describe.
To update your code, rename any call to `fail!` to `panic!` instead.
Assuming you have not created your own macro named `panic!`, this
will work on UNIX based systems:
grep -lZR 'fail!' . | xargs -0 -l sed -i -e 's/fail!/panic!/g'
You can of course also do this by hand.
[breaking-change]
Spring cleaning is here! In the Fall! This commit removes quite a large amount
of deprecated functionality from the standard libraries. I tried to ensure that
only old deprecated functionality was removed.
This is removing lots and lots of deprecated features, so this is a breaking
change. Please consult the deprecation messages of the deleted code to see how
to migrate code forward if it still needs migration.
[breaking-change]
compiletest: compact "linux" "macos" etc.as "unix".
liballoc: remove a superfluous "use".
libcollections: remove invocations of deprecated methods in favor of
their suggested replacements and use "_" for a loop counter.
libcoretest: remove invocations of deprecated methods; also add
"allow(deprecated)" for testing a deprecated method itself.
libglob: use "cfg_attr".
libgraphviz: add a test for one of data constructors.
libgreen: remove a superfluous "use".
libnum: "allow(type_overflow)" for type cast into u8 in a test code.
librustc: names of static variables should be in upper case.
libserialize: v[i] instead of get().
libstd/ascii: to_lowercase() instead of to_lower().
libstd/bitflags: modify AnotherSetOfFlags to use i8 as its backend.
It will serve better for testing various aspects of bitflags!.
libstd/collections: "allow(deprecated)" for testing a deprecated
method itself.
libstd/io: remove invocations of deprecated methods and superfluous "use".
Also add #[test] where it was missing.
libstd/num: introduce a helper function to effectively remove
invocations of a deprecated method.
libstd/path and rand: remove invocations of deprecated methods and
superfluous "use".
libstd/task and libsync/comm: "allow(deprecated)" for testing
a deprecated method itself.
libsync/deque: remove superfluous "unsafe".
libsync/mutex and once: names of static variables should be in upper case.
libterm: introduce a helper function to effectively remove
invocations of a deprecated method.
We still see a few warnings about using obsoleted native::task::spawn()
in the test modules for libsync. I'm not sure how I should replace them
with std::task::TaksBuilder and native::task::NativeTaskBuilder
(dependency to libstd?)
Signed-off-by: NODA, Kai <nodakai@gmail.com>
This commit repurposes most statics as constants in the standard library itself,
with the exception of TLS keys which precisely have their own memory location as
an implementation detail.
This commit also rewrites the bitflags syntax to use `const` instead of
`static`. All invocations will need to replace the word `static` with `const`
when declaring flags.
Due to the modification of the `bitflags!` syntax, this is a:
[breaking-change]
Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations.
BTreeMap's internal Node representation is particularly inefficient at the moment to
make this first implementation easy to reason about and fairly safe. Both collections
are also currently missing some of the tooling specific to sorted collections, which
is planned as future work pending reform of these APIs. General implementation issues
are discussed with TODOs internally
Perf results on x86_64 Linux:
test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4)
test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6)
test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3)
test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1)
test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1)
test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18)
test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20)
test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15)
test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4)
test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5)
test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1)
test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0)
test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1)
test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16)
test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12)
test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14)
BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns.
[breaking-change]
Deprecates the `find_or_*` family of "internal mutation" methods on `HashMap` in
favour of the "external mutation" Entry API as part of RFC 60. Part of #17320,
but this still needs to be done on the rest of the maps. However they don't have
any internal mutation methods defined, so they can be done without deprecating
or breaking anything. Work on `BTree` is part of the complete rewrite in #17334.
The implemented API deviates from the API described in the RFC in two key places:
* `VacantEntry.set` yields a mutable reference to the inserted element to avoid code
duplication where complex logic needs to be done *regardless* of whether the entry
was vacant or not.
* `OccupiedEntry.into_mut` was added so that it is possible to return a reference
into the map beyond the lifetime of the Entry itself, providing functional parity
to `VacantEntry.set`.
This allows the full find_or_insert functionality to be implemented using this API.
A PR will be submitted to the RFC to amend this.
[breaking-change]
Deprecates the `find_or_*` family of "internal mutation" methods on `HashMap` in
favour of the "external mutation" Entry API as part of RFC 60. Part of #17320,
although this still needs to be done on the rest of the maps, they don't have
any internal mutation methods defined, so they can be done without deprecating
or breaking anything. Work on `BTree`'s is part of the complete rewrite in #17334.
The implemented API deviates from the API described in the RFC in two key places:
* `VacantEntry.set` yields a mutable reference to the inserted element to avoid code
duplication where complex logic needs to be done *regardless* of whether the entry
was vacant or not.
* `OccupiedEntry.into_mut` was added so that it is possible to return a reference
into the map beyond the lifetime of the Entry itself, providing functional parity
to `VacantEntry.set`.
This allows the full find_or_insert functionality to be implemented using this API.
A PR will be submitted to the RFC to amend this.
[breaking-change]
* branchless `bucket.next()`
* robin_hood is a free function
* fixed the resize policy that was off by one
* documented the growth algorithm
* updated documentation after interface changes
* removed old fixmes
ImmutableVector -> ImmutableSlice
ImmutableEqVector -> ImmutableEqSlice
ImmutableOrdVector -> ImmutableOrdSlice
MutableVector -> MutableSlice
MutableVectorAllocating -> MutableSliceAllocating
MutableCloneableVector -> MutableCloneableSlice
MutableOrdVector -> MutableOrdSlice
These are all in the prelude so most code will not break.
[breaking-change]
Implement `Index` for `RingBuf`, `HashMap`, `TreeMap`, `SmallIntMap`, and `TrieMap`.
If there’s anything that I missed or should be removed, let me know.
Add an example showing how to use the map with a custom type. Fill in
examples for methods in the hashmap file without ones.
Also move pop_equiv next to related public methods, to not create a
duplicate trait implementation in the docs.
Implement for Vec, DList, RingBuf. Add MutableSeq to the prelude.
Since the collections traits are in the prelude most consumers of
these methods will continue to work without change.
[breaking-change]
This PR is the outcome of the library stabilization meeting for the
`liballoc::owned` and `libcore::cell` modules.
Aside from the stability attributes, there are a few breaking changes:
* The `owned` modules is now named `boxed`, to better represent its
contents. (`box` was unavailable, since it's a keyword.) This will
help avoid the misconception that `Box` plays a special role wrt
ownership.
* The `AnyOwnExt` extension trait is renamed to `BoxAny`, and its `move`
method is renamed to `downcast`, in both cases to improve clarity.
* The recently-added `AnySendOwnExt` extension trait is removed; it was
not being used and is unnecessary.
[breaking-change]
This was parsed by the parser but completely ignored; not even stored in
the AST!
This breaks code that looks like:
static X: &'static [u8] = &'static [1, 2, 3];
Change this code to the shorter:
static X: &'static [u8] = &[1, 2, 3];
Closes#15312.
[breaking-change]
While `HashMap::new` and `HashMap::with_capacity` were being initialized with a random `SipHasher`, it turns out that `HashMap::from_iter` was just using the default instance of `SipHasher`, which wasn't randomized. This closes that bug, and also inlines some important methods.
Earlier commits have established a baseline of `experimental` stability
for all crates under the facade (so their contents are considered
experimental within libstd). Since `experimental` is `allow` by
default, we should use the same baseline stability for libstd itself.
This commit adds `experimental` tags to all of the modules defined in
`std`, and `unstable` to `std` itself.
It turns out that HashMap's from_iter implementation was being
initialized without the sip keys being randomized. This adds
a custom default hasher that should avoid this potential vulnerability.
This breaks a fair amount of code. The typical patterns are:
* `for _ in range(0, 10)`: change to `for _ in range(0u, 10)`;
* `println!("{}", 3)`: change to `println!("{}", 3i)`;
* `[1, 2, 3].len()`: change to `[1i, 2, 3].len()`.
RFC #30. Closes#6023.
[breaking-change]
* The select/plural methods from format strings are removed
* The # character no longer needs to be escaped
* The \-based escapes have been removed
* '{{' is now an escape for '{'
* '}}' is now an escape for '}'
Closes#14810
[breaking-change]
This uncovered some dead code, most notably in middle/liveness.rs, which I think suggests there must be something fishy with that part of the code.
The #[allow(dead_code)] annotations on some of the fields I am not super happy about but as I understand, marker type may disappear at some point.
This commit moves Mutable, Map, MutableMap, Set, and MutableSet from
`core::collections` to the `collections` crate at the top-level. Additionally,
this removes the `deque` module and moves the `Deque` trait to only being
available at the top-level of the collections crate.
All functionality continues to be reexported through `std::collections`.
[breaking-change]
As with the previous commit with `librand`, this commit shuffles around some
`collections` code. The new state of the world is similar to that of librand:
* The libcollections crate now only depends on libcore and liballoc.
* The standard library has a new module, `std::collections`. All functionality
of libcollections is reexported through this module.
I would like to stress that this change is purely cosmetic. There are very few
alterations to these primitives.
There are a number of notable points about the new organization:
* std::{str, slice, string, vec} all moved to libcollections. There is no reason
that these primitives shouldn't be necessarily usable in a freestanding
context that has allocation. These are all reexported in their usual places in
the standard library.
* The `hashmap`, and transitively the `lru_cache`, modules no longer reside in
`libcollections`, but rather in libstd. The reason for this is because the
`HashMap::new` contructor requires access to the OSRng for initially seeding
the hash map. Beyond this requirement, there is no reason that the hashmap
could not move to libcollections.
I do, however, have a plan to move the hash map to the collections module. The
`HashMap::new` function could be altered to require that the `H` hasher
parameter ascribe to the `Default` trait, allowing the entire `hashmap` module
to live in libcollections. The key idea would be that the default hasher would
be different in libstd. Something along the lines of:
// src/libstd/collections/mod.rs
pub type HashMap<K, V, H = RandomizedSipHasher> =
core_collections::HashMap<K, V, H>;
This is not possible today because you cannot invoke static methods through
type aliases. If we modified the compiler, however, to allow invocation of
static methods through type aliases, then this type definition would
essentially be switching the default hasher from `SipHasher` in libcollections
to a libstd-defined `RandomizedSipHasher` type. This type's `Default`
implementation would randomly seed the `SipHasher` instance, and otherwise
perform the same as `SipHasher`.
This future state doesn't seem incredibly far off, but until that time comes,
the hashmap module will live in libstd to not compromise on functionality.
* In preparation for the hashmap moving to libcollections, the `hash` module has
moved from libstd to libcollections. A previously snapshotted commit enables a
distinct `Writer` trait to live in the `hash` module which `Hash`
implementations are now parameterized over.
Due to using a custom trait, the `SipHasher` implementation has lost its
specialized methods for writing integers. These can be re-added
backwards-compatibly in the future via default methods if necessary, but the
FNV hashing should satisfy much of the need for speedier hashing.
A list of breaking changes:
* HashMap::{get, get_mut} no longer fails with the key formatted into the error
message with `{:?}`, instead, a generic message is printed. With backtraces,
it should still be not-too-hard to track down errors.
* The HashMap, HashSet, and LruCache types are now available through
std::collections instead of the collections crate.
* Manual implementations of hash should be parameterized over `hash::Writer`
instead of just `Writer`.
[breaking-change]