[breaking-change]
1. The internal layout for traits has changed from (vtable, data) to (data, vtable). If you were relying on this in unsafe transmutes, you might get some very weird and apparently unrelated errors. You should not be doing this! Prefer not to do this at all, but if you must, you should use raw::TraitObject rather than hardcoding rustc's internal representation into your code.
2. The minimal type of reference-to-vec-literals (e.g., `&[1, 2, 3]`) is now a fixed size vec (e.g., `&[int, ..3]`) where it used to be an unsized vec (e.g., `&[int]`). If you want the unszied type, you must explicitly give the type (e.g., `let x: &[_] = &[1, 2, 3]`). Note in particular where multiple blocks must have the same type (e.g., if and else clauses, vec elements), the compiler will not coerce to the unsized type without a hint. E.g., `[&[1], &[1, 2]]` used to be a valid expression of type '[&[int]]'. It no longer type checks since the first element now has type `&[int, ..1]` and the second has type &[int, ..2]` which are incompatible.
3. The type of blocks (including functions) must be coercible to the expected type (used to be a subtype). Mostly this makes things more flexible and not less (in particular, in the case of coercing function bodies to the return type). However, in some rare cases, this is less flexible. TBH, I'm not exactly sure of the exact effects. I think the change causes us to resolve inferred type variables slightly earlier which might make us slightly more restrictive. Possibly it only affects blocks with unreachable code. E.g., `if ... { fail!(); "Hello" }` used to type check, it no longer does. The fix is to add a semicolon after the string.
methods.
This paves the way to associated items by introducing an extra level of
abstraction ("impl-or-trait item") between traits/implementations and
methods. This new abstraction is encoded in the metadata and used
throughout the compiler where appropriate.
There are no functional changes; this is purely a refactoring.
Implement `Index` for `RingBuf`, `HashMap`, `TreeMap`, `SmallIntMap`, and `TrieMap`.
If there’s anything that I missed or should be removed, let me know.
Fixes str/struct ambiguity (by removing the synonym) and pushes raw searches to the history instead of processed ones.
# [Live Version Here](http://cg.scs.carleton.ca/~abeinges/doc/std/)
* move some sidebar contents to a title bar when small
* inline description toggle when small
* make out-of-band and in-band content share space, rather than float and clash
* compress wording of out-of-band content to avoid line-wrap as much as possible
<strike>Adds a simple/detailed toggle to api doc pages.
Detailed mode is the current behaviour, simple mode hides all doccomment details leaving only signatures for quick browsing.
</strike>
Adds [expand all] and [collapse all] "links" to all api doc pages. All doccomments are collapsed, leaving only signatures for quick browsing.
In addition, clicking on a <strike>function name</strike> function's [toggle details] link now toggles the visibility of the associated doccomment.
--------
# [Live Build Here](http://cg.scs.carleton.ca/~abeinges/doc/std/vec/struct.Vec.html)
This is something that's been bothering me, and I've seen some people mention in IRC before. The docs are *great* if you want a full in-depth look at an API, but *awful* if you want to scan them. This provides the ability to toggle complexity freely. Interacts perfectly well with noscript, since the static page is effectively unchanged. Collapsing is just hiding divs with css.
I'm not much of a designer, so design input welcome on the actual UX for toggling.
The actual javascript is *a bit* brittle to layout changes, but it always will be without adding lots of extra junk to the actual markup, which didn't seem worth it.
All doccomments are now collapsable via a nearby [-] button
Adds [collapse all] and [expand all] buttons to the top of all api pages
Tweaks some layout to accomadate this
This enables the docs search function to be more forgiving for spelling mistakes. The algorithm works as a dynamic programming algorithm to detect the minimum number of changes required to the search parameter string in order to match any string in the search index. If the number of changes is less then a threshold (currently defined as 3), then the search parameter will be included as it is a possible misspelling of the word. Any results returned by the algorithm are sorted by distance and are ranked lower than results that are partial or exact matches (aka the matches returned by the original search algorithm). Additionally, the increment in the for loops in this file were using one of three different ways to increment (`i += 1` `i++` and `++i`) so I just standardized it to `++i`.
As an example, consider searching for the word `String` and accidentally typing in `Strnig`. The old system would return no results because it is a misspelling, but the Levenshtein distance between these two inputs is only two, which means that this will return `String` as a result. Additionally, it will return a few other results such as `strong`, and `StdRng` because these are also similar to `Strnig`. Because of the ranking system though, this change should be unobtrusive to anyone that spells the words correctly, as those are still ranked first before any Levenshtein results.
* Make the code fill up the full width of the page (no massive whitespace on the left)
* Move the code down to make it not intersect the logo
* Set a min-width and remove the max-width so that the code doesn't scroll internally, but instead scrolls the page, meaning horizontal scroll bars are always available
* Set overflow to actually overflow, just to be sure
Fixes#15891
the CFG for match statements.
There were two bugs in issue #14684. One was simply that the borrow
check didn't know about the correct CFG for match statements: the
pattern must be a predecessor of the guard. This disallows the bad
behavior if there are bindings in the pattern. But it isn't enough to
prevent the memory safety problem, because of wildcards; thus, this
patch introduces a more restrictive rule, which disallows assignments
and mutable borrows inside guards outright.
I discussed this with Niko and we decided this was the best plan of
action.
This breaks code that performs mutable borrows in pattern guards. Most
commonly, the code looks like this:
impl Foo {
fn f(&mut self, ...) {}
fn g(&mut self, ...) {
match bar {
Baz if self.f(...) => { ... }
_ => { ... }
}
}
}
Change this code to not use a guard. For example:
impl Foo {
fn f(&mut self, ...) {}
fn g(&mut self, ...) {
match bar {
Baz => {
if self.f(...) {
...
} else {
...
}
}
_ => { ... }
}
}
}
Sometimes this can result in code duplication, but often it illustrates
a hidden memory safety problem.
Closes#14684.
[breaking-change]
r? @pnkfelix
the CFG for match statements.
There were two bugs in issue #14684. One was simply that the borrow
check didn't know about the correct CFG for match statements: the
pattern must be a predecessor of the guard. This disallows the bad
behavior if there are bindings in the pattern. But it isn't enough to
prevent the memory safety problem, because of wildcards; thus, this
patch introduces a more restrictive rule, which disallows assignments
and mutable borrows inside guards outright.
I discussed this with Niko and we decided this was the best plan of
action.
This breaks code that performs mutable borrows in pattern guards. Most
commonly, the code looks like this:
impl Foo {
fn f(&mut self, ...) {}
fn g(&mut self, ...) {
match bar {
Baz if self.f(...) => { ... }
_ => { ... }
}
}
}
Change this code to not use a guard. For example:
impl Foo {
fn f(&mut self, ...) {}
fn g(&mut self, ...) {
match bar {
Baz => {
if self.f(...) {
...
} else {
...
}
}
_ => { ... }
}
}
}
Sometimes this can result in code duplication, but often it illustrates
a hidden memory safety problem.
Closes#14684.
[breaking-change]
Apparently keypress doesn't quite work in all browsers due to some not invoking
the handler and jquery not setting the right `which` field in all circumstances.
According to http://stackoverflow.com/questions/2166771 switching over to
`keydown` works and it appears to do the trick. Tested in Safari, Firefox, and
Chrome.
Closes#15011
This eliminates the last vestige of the `~` syntax.
Instead of `~self`, write `self: Box<TypeOfSelf>`; instead of `mut
~self`, write `mut self: Box<TypeOfSelf>`, replacing `TypeOfSelf` with
the self-type parameter as specified in the implementation.
Closes#13885.
[breaking-change]
This makes two changes to region inference: (1) it allows region
inference to relate early-bound regions; and (2) it allows regions to be
related before variance runs. The former is needed because there is no
relation between the two regions before region substitution happens,
while the latter is needed because type collection has to run before
variance. We assume that, before variance is inferred, that lifetimes
are invariant. This is a conservative overapproximation.
This relates to #13885. This does not remove `~self` from the language
yet, however.
[breaking-change]
This commit adds a crate-level dashboard summarizing the stability
levels of all items for all submodules of the crate.
The information is also written as a json file, intended for consumption
by pages like http://huonw.github.io/isrustfastyet/Closes#13541
- Treat WOFF as binary files so that git does not perform newline normalization.
- Replace corrupt Heuristica files with Source Serif Pro — italics are [almost in production](https://github.com/adobe/source-serif-pro/issues/2) so I left Heuristica Italic which makes a good pair with SSP. Overall, Source Serif Pro is I think a better fit for rustdoc (cc @TheHydroImpulse). This ought to fix#15527.
- Store Source Code Pro locally in order to make offline docs freestanding. Fixes#14778.
Preview: http://adrientetar.legtux.org/cached/rust-docs/core.html
r? @alexcrichton
Now, the lexer will categorize every byte in its input according to the
grammar. The parser skips over these while parsing, thus avoiding their
presence in the input to syntax extensions.