Use `zip_eq` to enforce that things being zipped have equal sizes
Some `zip`s are best enforced to be equal, since size mismatches suggest deeper bugs in the compiler.
`OutputTypeParameterMismatch` -> `SignatureMismatch`
I'm probably missing something that made this rename more complicated. What did you end up getting stuck on when renaming this selection error, `@lcnr?`
**also** I renamed the `FulfillmentErrorCode` variants. This is just churn but I wanted to do it forever. I can move it out of this PR if desired.
r? lcnr
But we can't easily switch from `Vec<Diagnostic>` to
`Vec<DiagnosticBuilder<G>>` because there's a mix of errors and warnings
which result in different `G` types. So we must make
`DiagnosticBuilder::into_diagnostic` public, but that's ok, and it will
get more use in subsequent commits.
In #119606 I added them and used a `_mv` suffix, but that wasn't great.
A `with_` prefix has three different existing uses.
- Constructors, e.g. `Vec::with_capacity`.
- Wrappers that provide an environment to execute some code, e.g.
`with_session_globals`.
- Consuming chaining methods, e.g. `Span::with_{lo,hi,ctxt}`.
The third case is exactly what we want, so this commit changes
`DiagnosticBuilder::foo_mv` to `DiagnosticBuilder::with_foo`.
Thanks to @compiler-errors for the suggestion.
We have `span_delayed_bug` and often pass it a `DUMMY_SP`. This commit
adds `delayed_bug`, which matches pairs like `err`/`span_err` and
`warn`/`span_warn`.
Because it takes an error code after the span. This avoids the confusing
overlap with the `DiagCtxt::struct_span_err` method, which doesn't take
an error code.
This works for most of its call sites. This is nice, because `emit` very
much makes sense as a consuming operation -- indeed,
`DiagnosticBuilderState` exists to ensure no diagnostic is emitted
twice, but it uses runtime checks.
For the small number of call sites where a consuming emit doesn't work,
the commit adds `DiagnosticBuilder::emit_without_consuming`. (This will
be removed in subsequent commits.)
Likewise, `emit_unless` becomes consuming. And `delay_as_bug` becomes
consuming, while `delay_as_bug_without_consuming` is added (which will
also be removed in subsequent commits.)
All this requires significant changes to `DiagnosticBuilder`'s chaining
methods. Currently `DiagnosticBuilder` method chaining uses a
non-consuming `&mut self -> &mut Self` style, which allows chaining to
be used when the chain ends in `emit()`, like so:
```
struct_err(msg).span(span).emit();
```
But it doesn't work when producing a `DiagnosticBuilder` value,
requiring this:
```
let mut err = self.struct_err(msg);
err.span(span);
err
```
This style of chaining won't work with consuming `emit` though. For
that, we need to use to a `self -> Self` style. That also would allow
`DiagnosticBuilder` production to be chained, e.g.:
```
self.struct_err(msg).span(span)
```
However, removing the `&mut self -> &mut Self` style would require that
individual modifications of a `DiagnosticBuilder` go from this:
```
err.span(span);
```
to this:
```
err = err.span(span);
```
There are *many* such places. I have a high tolerance for tedious
refactorings, but even I gave up after a long time trying to convert
them all.
Instead, this commit has it both ways: the existing `&mut self -> Self`
chaining methods are kept, and new `self -> Self` chaining methods are
added, all of which have a `_mv` suffix (short for "move"). Changes to
the existing `forward!` macro lets this happen with very little
additional boilerplate code. I chose to add the suffix to the new
chaining methods rather than the existing ones, because the number of
changes required is much smaller that way.
This doubled chainging is a bit clumsy, but I think it is worthwhile
because it allows a *lot* of good things to subsequently happen. In this
commit, there are many `mut` qualifiers removed in places where
diagnostics are emitted without being modified. In subsequent commits:
- chaining can be used more, making the code more concise;
- more use of chaining also permits the removal of redundant diagnostic
APIs like `struct_err_with_code`, which can be replaced easily with
`struct_err` + `code_mv`;
- `emit_without_diagnostic` can be removed, which simplifies a lot of
machinery, removing the need for `DiagnosticBuilderState`.
Check yield terminator's resume type in borrowck
In borrowck, we didn't check that the lifetimes of the `TerminatorKind::Yield`'s `resume_place` were actually compatible with the coroutine's signature. That means that the lifetimes were totally going unchecked. Whoops!
This PR implements this checking.
Fixes#119564
r? types
Make closures carry their own ClosureKind
Right now, we use the "`movability`" field of `hir::Closure` to distinguish a closure and a coroutine. This is paired together with the `CoroutineKind`, which is located not in the `hir::Closure`, but the `hir::Body`. This is strange and redundant.
This PR introduces `ClosureKind` with two variants -- `Closure` and `Coroutine`, which is put into `hir::Closure`. The `CoroutineKind` is thus removed from `hir::Body`, and `Option<Movability>` no longer needs to be a stand-in for "is this a closure or a coroutine".
r? eholk
Split coroutine desugaring kind from source
What a coroutine is desugared from (gen/async gen/async) should be separate from where it comes (fn/block/closure).
`IntoDiagnostic` defaults to `ErrorGuaranteed`, because errors are the
most common diagnostic level. It makes sense to do likewise for the
closely-related (and much more widely used) `DiagnosticBuilder` type,
letting us write `DiagnosticBuilder<'a, ErrorGuaranteed>` as just
`DiagnosticBuilder<'a>`. This cuts over 200 lines of code due to many
multi-line things becoming single line things.
Currently, `emit_diagnostic` takes `&mut self`.
This commit changes it so `emit_diagnostic` takes `self` and the new
`emit_diagnostic_without_consuming` function takes `&mut self`.
I find the distinction useful. The former case is much more common, and
avoids a bunch of `mut` and `&mut` occurrences. We can also restrict the
latter with `pub(crate)` which is nice.
Renamings:
- find -> opt_hir_node
- get -> hir_node
- find_by_def_id -> opt_hir_node_by_def_id
- get_by_def_id -> hir_node_by_def_id
Fix rebase changes using removed methods
Use `tcx.hir_node_by_def_id()` whenever possible in compiler
Fix clippy errors
Fix compiler
Apply suggestions from code review
Co-authored-by: Vadim Petrochenkov <vadim.petrochenkov@gmail.com>
Add FIXME for `tcx.hir()` returned type about its removal
Simplify with with `tcx.hir_node_by_def_id`
detects redundant imports that can be eliminated.
for #117772 :
In order to facilitate review and modification, split the checking code and
removing redundant imports code into two PR.
`GenKillAnalysis` has five methods that take a transfer function arg:
- `statement_effect`
- `before_statement_effect`
- `terminator_effect`
- `before_terminator_effect`
- `call_return_effect`
All the transfer function args have type `&mut impl GenKill<Self::Idx>`,
except for `terminator_effect`, which takes the simpler `Self::Domain`.
But only the first two need to be `impl GenKill`. The other
three can all be `Self::Domain`, just like `Analysis`. So this commit
changes the last two to take `Self::Domain`, making `GenKillAnalysis`
and `Analysis` more similar.
(Another idea would be to make all these methods `impl GenKill`. But
that doesn't work: `MaybeInitializedPlaces::terminator_effect` requires
the arg be `Self::Domain` so that `self_is_unwind_dead(place, state)`
can be called on it.)
This results in two non-generic types being used: `BorrowckResults` and
`BorrowckFlowState`. It's a net reduction in lines of code, and a little
easier to read.
It is used just once. With it removed, the relevant code is a little
boilerplate-y but much easier to read, and is the same length. Overall I
think it's an improvement.
When encountering multiple mutable borrows, suggest cloning and adding
derive annotations as needed.
```
error[E0596]: cannot borrow `sm.x` as mutable, as it is behind a `&` reference
--> $DIR/accidentally-cloning-ref-borrow-error.rs:32:9
|
LL | foo(&mut sm.x);
| ^^^^^^^^^ `sm` is a `&` reference, so the data it refers to cannot be borrowed as mutable
|
help: `Str` doesn't implement `Clone`, so this call clones the reference `&Str`
--> $DIR/accidentally-cloning-ref-borrow-error.rs:31:21
|
LL | let mut sm = sr.clone();
| ^^^^^^^
help: consider annotating `Str` with `#[derive(Clone)]`
|
LL + #[derive(Clone)]
LL | struct Str {
|
help: consider specifying this binding's type
|
LL | let mut sm: &mut Str = sr.clone();
| ++++++++++
```
```
error[E0596]: cannot borrow `*inner` as mutable, as it is behind a `&` reference
--> $DIR/issue-91206.rs:14:5
|
LL | inner.clear();
| ^^^^^ `inner` is a `&` reference, so the data it refers to cannot be borrowed as mutable
|
help: you can `clone` the `Vec<usize>` value and consume it, but this might not be your desired behavior
--> $DIR/issue-91206.rs:11:17
|
LL | let inner = client.get_inner_ref();
| ^^^^^^^^^^^^^^^^^^^^^^
help: consider specifying this binding's type
|
LL | let inner: &mut Vec<usize> = client.get_inner_ref();
| +++++++++++++++++
```