A few changes are included here:
* The `winapi` and `url` dependencies were dropped. The source code for these
projects is pretty weighty, and we're about to vendor them, so let's not
commit to that intake just yet. If necessary we can vendor them later but for
now it shouldn't be necessary.
* The `--frozen` flag is now always passed to Cargo, obviating the need for
tidy's `cargo_lock` check.
* Tidy was updated to not check the vendor directory
Closes#34687
If the `-f` option isn't given, GNU tar will use environment variable
`TAPE` first, and next use the compiled-in default, which isn't
necessary `stdout` (it is the tape device `/dev/rst0` under OpenBSD for
example).
This commit removes all infrastructure from the repository for our so-called
snapshots to instead bootstrap the compiler from stable releases. Bootstrapping
from a previously stable release is a long-desired feature of distros because
they're not fans of downloading binary stage0 blobs from us. Additionally, this
makes our own CI easier as we can decommission all of the snapshot builders and
start having a regular cadence to when we update the stage0 compiler.
A new `src/etc/get-stage0.py` script was added which shares some code with
`src/bootstrap/bootstrap.py` to read a new file, `src/stage0.txt`, which lists
the current stage0 compiler as well as cargo that we bootstrap from. This script
will download the relevant `rustc` package an unpack it into `$target/stage0` as
we do today.
One problem of bootstrapping from stable releases is that we're not able to
compile unstable code (e.g. all the `#![feature]` directives in libcore/libstd).
To overcome this we employ two strategies:
* The bootstrap key of the previous compiler is hardcoded into `src/stage0.txt`
(enabled as a result of #32731) and exported by the build system. This enables
nightly features in the compiler we download.
* The standard library and compiler are pinned to a specific stage0, which
doesn't change, so we're guaranteed that we'll continue compiling as we start
from a known fixed source.
The process for making a release will also need to be tweaked now to continue to
cadence of bootstrapping from the previous release. This process looks like:
1. Merge `beta` to `stable`
2. Produce a new stable compiler.
3. Change `master` to bootstrap from this new stable compiler.
4. Merge `master` to `beta`
5. Produce a new beta compiler
6. Change `master` to bootstrap from this new beta compiler.
Step 3 above should involve very few changes as `master` was previously
bootstrapping from `beta` which is the same as `stable` at that point in time.
Step 6, however, is where we benefit from removing lots of `#[cfg(stage0)]` and
get to use new features. This also shouldn't slow the release too much as steps
1-5 requires little work other than waiting and step 6 just needs to happen at
some point during a release cycle, it's not time sensitive.
Closes#29555Closes#29557
This commit adds support in rustbuild for running all of the compiletest test
suites as part of `make check`. The `compiletest` program was moved to
`src/tools` (like `rustbook` and others) and is now just compiled like any other
old tool. Each test suite has a pretty standard set of dependencies and just
tweaks various parameters to the final compiletest executable.
Note that full support is lacking in terms of:
* Once a test suite has passed, that's not remembered. When a test suite is
requested to be run, it's always run.
* The arguments to compiletest probably don't work for every possible
combination of platforms and testing environments just yet. There will likely
need to be future updates to tweak various pieces here and there.
* Cross compiled test suites probably don't work just yet, support for that will
come in a follow-up patch.
This is because the tool compiler passes the name of the tool
as a command line `--cfg`. The improved session config parser
is stricter and no longer permits invalid meta items (such as
"error-index-generator").
It looks like the target libs aren't actually the same across hosts so instead
of always packaging the target libs from CFG_BUILD take the target libs from the
host if we have them and then only failing that do we take them from CFG_BUILD.
Closes#29228
This commit splits out the standard library from the current 'rustc' package
into a new 'rust-std' package. This is the basis for the work on easily
packaging compilers that can cross-compile to new targets.
The install target depends on compiler-docs but 'all' does not.
This means that running 'make && make install' will run additional
doc builds and tests during installation, which hides bugs in
the build.
For now this just unconditionally stops building compiler docs.
This commit updates the `dist` target for MSVC to not build the mingw components
and to also ensure that the `llvm-ar.exe` binary is ferried along into the right
location for installs.
This distributes docs in a separate package called rust-docs. The rust-packaging
project will combine it with Rust and Cargo into a single installer in a variety of formats.
If you configure with `--disable-docs`, the `doc` directory does not get generated, so
`cp -r doc dist/` fails when you `make dist{,-tar-bins,-doc}` or `make install`
This commit removes the libuv and gyp submodules, as well as all build
infrastructure related to them.
For more context, see the [runtime removal
RFC](https://github.com/rust-lang/rfcs/pull/230)
[breaking-change]
gcc, ld, ar, dlltool, windres go into $(RUST)/bin/rustlib/<triple>/bin/
platform libraries and startup objects got into $(RUST)/bin/rustlib/<triple>/lib/