- `--emit=asm --target=nvptx64-nvidia-cuda` can be used to turn a crate
into a PTX module (a `.s` file).
- intrinsics like `__syncthreads` and `blockIdx.x` are exposed as
`"platform-intrinsics"`.
- "cabi" has been implemented for the nvptx and nvptx64 architectures.
i.e. `extern "C"` works.
- a new ABI, `"ptx-kernel"`. That can be used to generate "global"
functions. Example: `extern "ptx-kernel" fn kernel() { .. }`. All
other functions are "device" functions.
annotate stricter lifetimes on LateLintPass methods to allow them to forward to a Visitor
this unblocks clippy (rustup blocked after #37918)
clippy has lots of lints that internally call an `intravisit::Visitor`, but the current lifetimes on `LateLintPass` methods conflicted with the required lifetimes (there was no connection between the HIR elements and the `TyCtxt`)
r? @Manishearth
Add new #[target_feature = "..."] attribute.
This commit adds a new attribute that instructs the compiler to emit
target specific code for a single function. For example, the following
function is permitted to use instructions that are part of SSE 4.2:
#[target_feature = "+sse4.2"]
fn foo() { ... }
In particular, use of this attribute does not require setting the
-C target-feature or -C target-cpu options on rustc.
This attribute does not have any protections built into it. For example,
nothing stops one from calling the above `foo` function on hosts without
SSE 4.2 support. Doing so may result in a SIGILL.
I've also expanded the x86 target feature whitelist.
This commit adds a new attribute that instructs the compiler to emit
target specific code for a single function. For example, the following
function is permitted to use instructions that are part of SSE 4.2:
#[target_feature = "+sse4.2"]
fn foo() { ... }
In particular, use of this attribute does not require setting the
-C target-feature or -C target-cpu options on rustc.
This attribute does not have any protections built into it. For example,
nothing stops one from calling the above `foo` function on hosts without
SSE 4.2 support. Doing so may result in a SIGILL.
This commit also expands the target feature whitelist to include lzcnt,
popcnt and sse4a. Namely, lzcnt and popcnt have their own CPUID bits,
but were introduced with SSE4.
This implements RFC 1624, tracking issue #37339.
- `FnCtxt` (in typeck) gets a stack of `LoopCtxt`s, which store the
currently deduced type of that loop, the desired type, and a list of
break expressions currently seen. `loop` loops get a fresh type
variable as their initial type (this logic is stolen from that for
arrays). `while` loops get `()`.
- `break {expr}` looks up the broken loop, and unifies the type of
`expr` with the type of the loop.
- `break` with no expr unifies the loop's type with `()`.
- When building MIR, `loop` loops no longer construct a `()` value at
termination of the loop; rather, the `break` expression assigns the
result of the loop. `while` loops are unchanged.
- `break` respects contexts in which expressions may not end with braced
blocks. That is, `while break { break-value } { while-body }` is
illegal; this preserves backwards compatibility.
- The RFC did not make it clear, but I chose to make `break ()` inside
of a `while` loop illegal, just in case we wanted to do anything with
that design space in the future.
This is my first time dealing with this part of rustc so I'm sure
there's plenty of problems to pick on here ^_^
Clean up `ast::Attribute`, `ast::CrateConfig`, and string interning
This PR
- removes `ast::Attribute_` (changing `Attribute` from `Spanned<Attribute_>` to a struct),
- moves a `MetaItem`'s name from the `MetaItemKind` variants to a field of `MetaItem`,
- avoids needlessly wrapping `ast::MetaItem` with `P`,
- moves string interning into `syntax::symbol` (`ast::Name` is a reexport of `symbol::Symbol` for now),
- replaces `InternedString` with `Symbol` in the AST, HIR, and various other places, and
- refactors `ast::CrateConfig` from a `Vec` to a `HashSet`.
r? @eddyb
This commit is an implementation of [RFC 1721] which adds a new target feature
to the compiler, `crt-static`, which can be used to select how the C runtime for
a target is linked. Most targets dynamically linke the C runtime by default with
the notable exception of some of the musl targets.
[RFC 1721]: https://github.com/rust-lang/rfcs/blob/master/text/1721-crt-static.md
This commit first adds the new target-feature, `crt-static`. If enabled, then
the `cfg(target_feature = "crt-static")` will be available. Targets like musl
will have this enabled by default. This feature can be controlled through the
standard target-feature interface, `-C target-feature=+crt-static` or
`-C target-feature=-crt-static`.
Next this adds an gated and unstable `#[link(cfg(..))]` feature to enable the
`crt-static` semantics we want with libc. The exact behavior of this attribute
is a little squishy, but it's intended to be a forever-unstable
implementation detail of the liblibc crate.
Specifically the `#[link(cfg(..))]` annotation means that the `#[link]`
directive is only active in a compilation unit if that `cfg` value is satisfied.
For example when compiling an rlib, these directives are just encoded and
ignored for dylibs, and all staticlibs are continued to be put into the rlib as
usual. When placing that rlib into a staticlib, executable, or dylib, however,
the `cfg` is evaluated *as if it were defined in the final artifact* and the
library is decided to be linked or not.
Essentially, what'll happen is:
* On MSVC with `-C target-feature=-crt-static`, the `msvcrt.lib` library will be
linked to.
* On MSVC with `-C target-feature=+crt-static`, the `libcmt.lib` library will be
linked to.
* On musl with `-C target-feature=-crt-static`, the object files in liblibc.rlib
are removed and `-lc` is passed instead.
* On musl with `-C target-feature=+crt-static`, the object files in liblibc.rlib
are used and `-lc` is not passed.
This commit does **not** include an update to the liblibc module to implement
these changes. I plan to do that just after the 1.14.0 beta release is cut to
ensure we get ample time to test this feature.
cc #37406
macros 1.1: Allow proc_macro functions to declare attributes to be mark as used
This PR allows proc macro functions to declare attribute names that should be marked as used when attached to the deriving item. There are a few questions for this PR.
- Currently this uses a separate attribute named `#[proc_macro_attributes(..)]`, is this the best choice?
- In order to make this work, the `check_attribute` function had to be modified to not error on attributes marked as used. This is a pretty large change in semantics, is there a better way to do this?
- I've got a few clones where I don't know if I need them (like turning `item` into a `TokenStream`), can these be avoided?
- Is switching to `MultiItemDecorator` the right thing here?
Also fixes https://github.com/rust-lang/rust/issues/37563.
Stabilize `..` in tuple (struct) patterns
I'd like to nominate `..` in tuple and tuple struct patterns for stabilization.
This feature is a relatively small extension to existing stable functionality and doesn't have known blockers.
The feature first appeared in Rust 1.10 6 months ago.
An example of use: https://github.com/rust-lang/rust/pull/36203
Closes https://github.com/rust-lang/rust/issues/33627
r? @nikomatsakis
KNOWN_ATTRIBUTES should really be named BUILT_ATTRIBUTES,
while KNOWN_ATTRIBUTES should be used to mark attributes
as known, similar to USED_ATTRIBUTES.
This commit is an implementation of [RFC 1665] which adds support for the
`#![windows_subsystem]` attribute. This attribute allows specifying either the
"windows" or "console" subsystems on Windows to the linker.
[RFC 1665]: https://github.com/rust-lang/rfcs/blob/master/text/1665-windows-subsystem.md
Previously all Rust executables were compiled as the "console" subsystem which
meant that if you wanted a graphical application it would erroneously pop up a
console whenever opened. When compiling an application, however, this is
undesired behavior and the "windows" subsystem is used instead to have control
over user interactions.
This attribute is validated, but ignored on all non-Windows platforms.
cc #37499
Implement field shorthands in struct literal expressions.
Implements #37340 in a straight-forward way: `Foo { x, y: f() }` parses as `Foo { x: x, y: f() }`.
Because of the added `is_shorthand` to `ast::Field`, this is `[syntax-breaking]` (cc @Manishearth).
* [x] Mark the fields as being a shorthand (the exact same way we do it in patterns), for pretty-printing.
* [x] Gate the shorthand syntax with `#![feature(field_init_shorthand)]`.
* [x] Don't parse numeric field as identifiers.
* [x] Arbitrary field order tests.
Allow bootstrapping without a key. Fixes#36548
This will make it easier for packagers to bootstrap rustc when they happen
to have a bootstrap compiler with a slightly different version number.
It's not ok for anything other than the build system to set this environment variable.
r? @alexcrichton
`#[may_dangle]` attribute
`#[may_dangle]` attribute
Second step of #34761. Last big hurdle before we can work in earnest towards Allocator integration (#32838)
Note: I am not clear if this is *also* a syntax-breaking change that needs to be part of a breaking-batch.
This will make it easier for packagers to bootstrap rustc when they happen
to have a bootstrap compiler with a slightly different version number.
It's not ok for anything other than the build system to set this environment variable.