Fix const core::panic!(non_literal_str).
Invocations of `core::panic!(x)` where `x` is not a string literal expand to `panic!("{}", x)`, which is not understood by the const panic logic right now. This adds `panic_str` as a lang item, and modifies the const eval implementation to hook into this item as well.
This fixes the issue mentioned here: https://github.com/rust-lang/rust/issues/51999#issuecomment-687604248
r? `@RalfJung`
`@rustbot` modify labels: +A-const-eval
change the order of type arguments on ControlFlow
This allows ControlFlow<BreakType> which is much more ergonomic for common iterator combinator use cases.
Addresses one component of #75744
Check for exhaustion in RangeInclusive::contains and slicing
When a range has finished iteration, `is_empty` returns true, so it
should also be the case that `contains` returns false.
Fixes#77941.
add `insert` to `Option`
This removes a cause of `unwrap` and code complexity.
This allows replacing
```
option_value = Some(build());
option_value.as_mut().unwrap()
```
with
```
option_value.insert(build())
```
It's also useful in contexts not requiring the mutability of the reference.
Here's a typical cache example:
```
let checked_cache = cache.as_ref().filter(|e| e.is_valid());
let content = match checked_cache {
Some(e) => &e.content,
None => {
cache = Some(compute_cache_entry());
// unwrap is OK because we just filled the option
&cache.as_ref().unwrap().content
}
};
```
It can be changed into
```
let checked_cache = cache.as_ref().filter(|e| e.is_valid());
let content = match checked_cache {
Some(e) => &e.content,
None => &cache.insert(compute_cache_entry()).content,
};
```
*(edited: I removed `insert_with`)*
This removes a cause of `unwrap` and code complexity.
This allows replacing
```
option_value = Some(build());
option_value.as_mut().unwrap()
```
with
```
option_value.insert(build())
```
or
```
option_value.insert_with(build)
```
It's also useful in contexts not requiring the mutability of the reference.
Here's a typical cache example:
```
let checked_cache = cache.as_ref().filter(|e| e.is_valid());
let content = match checked_cache {
Some(e) => &e.content,
None => {
cache = Some(compute_cache_entry());
// unwrap is OK because we just filled the option
&cache.as_ref().unwrap().content
}
};
```
It can be changed into
```
let checked_cache = cache.as_ref().filter(|e| e.is_valid());
let content = match checked_cache {
Some(e) => &e.content,
None => &cache.insert_with(compute_cache_entry).content,
};
```
Doc formating consistency between slice sort and sort_unstable, and big O notation consistency
Updated documentation for slice sorting methods to be consistent between stable and unstable versions, which just ended up being minor formatting differences.
I also went through and updated any doc comments with big O notation to be consistent with #74010 by italicizing them rather than having them in a code block.
Implement TryFrom between NonZero types.
This will instantly be stable, as trait implementations for stable types and traits can not be `#[unstable]`.
Closes#77258.
@rustbot modify labels: +T-libs
Improve wording of "cannot multiply" type error
For example, if you had this code:
fn foo(x: i32, y: f32) -> f32 {
x * y
}
You would get this error:
error[E0277]: cannot multiply `f32` to `i32`
--> src/lib.rs:2:7
|
2 | x * y
| ^ no implementation for `i32 * f32`
|
= help: the trait `Mul<f32>` is not implemented for `i32`
However, that's not usually how people describe multiplication. People
usually describe multiplication like how the division error words it:
error[E0277]: cannot divide `i32` by `f32`
--> src/lib.rs:2:7
|
2 | x / y
| ^ no implementation for `i32 / f32`
|
= help: the trait `Div<f32>` is not implemented for `i32`
So that's what this change does. It changes this:
error[E0277]: cannot multiply `f32` to `i32`
--> src/lib.rs:2:7
|
2 | x * y
| ^ no implementation for `i32 * f32`
|
= help: the trait `Mul<f32>` is not implemented for `i32`
To this:
error[E0277]: cannot multiply `i32` by `f32`
--> src/lib.rs:2:7
|
2 | x * y
| ^ no implementation for `i32 * f32`
|
= help: the trait `Mul<f32>` is not implemented for `i32`
Add Pin::static_ref, static_mut.
This adds `Pin::static_ref` and `Pin::static_mut`, which convert a static reference to a pinned static reference.
Static references are effectively already pinned, as what they refer to has to live forever and can never be moved.
---
Context: I want to update the `sys` and `sys_common` mutexes/rwlocks/condvars to use `Pin<&self>` in their functions, instead of only warning in the unsafety comments that they may not be moved. That should make them a little bit less dangerous to use. Putting such an object in a `static` (e.g. through `sys_common::StaticMutex`) fulfills the requirements about never moving it, but right now there's no safe way to get a `Pin<&T>` to a `static`. This solves that.
Move `slice::check_range` to `RangeBounds`
Since this method doesn't take a slice anymore (#76662), it makes more sense to define it on `RangeBounds`.
Questions:
- Should the new method be `assert_len` or `assert_length`?
For example, if you had this code:
fn foo(x: i32, y: f32) -> f32 {
x * y
}
You would get this error:
error[E0277]: cannot multiply `f32` to `i32`
--> src/lib.rs:2:7
|
2 | x * y
| ^ no implementation for `i32 * f32`
|
= help: the trait `Mul<f32>` is not implemented for `i32`
However, that's not usually how people describe multiplication. People
usually describe multiplication like how the division error words it:
error[E0277]: cannot divide `i32` by `f32`
--> src/lib.rs:2:7
|
2 | x / y
| ^ no implementation for `i32 / f32`
|
= help: the trait `Div<f32>` is not implemented for `i32`
So that's what this change does. It changes this:
error[E0277]: cannot multiply `f32` to `i32`
--> src/lib.rs:2:7
|
2 | x * y
| ^ no implementation for `i32 * f32`
|
= help: the trait `Mul<f32>` is not implemented for `i32`
To this:
error[E0277]: cannot multiply `i32` by `f32`
--> src/lib.rs:2:7
|
2 | x * y
| ^ no implementation for `i32 * f32`
|
= help: the trait `Mul<f32>` is not implemented for `i32`
Deny broken intra-doc links in linkchecker
Since rustdoc isn't warning about these links, check for them manually.
This also fixes the broken links that popped up from the lint.
Add `str::{Split,RSplit,SplitN,RSplitN,SplitTerminator,RSplitTerminator,SplitInclusive}::as_str` methods
tl;dr this allows viewing unyelded part of str-split-iterators, like so:
```rust
let mut split = "Mary had a little lamb".split(' ');
assert_eq!(split.as_str(), "Mary had a little lamb");
split.next();
assert_eq!(split.as_str(), "had a little lamb");
split.by_ref().for_each(drop);
assert_eq!(split.as_str(), "");
```
--------------
This PR adds semi-identical `as_str` methods to most str-split-iterators with signatures like `&'_ Split<'a, P: Pattern<'a>> -> &'a str` (Note: output `&str` lifetime is bound to the `'a`, not the `'_`). The methods are similar to [`Chars::as_str`]
`SplitInclusive::as_str` is under `"str_split_inclusive_as_str"` feature gate, all other methods are under `"str_split_as_str"` feature gate.
Before this PR you had to sum `len`s of all yielded parts or collect into `String` to emulate `as_str`.
[`Chars::as_str`]: https://doc.rust-lang.org/core/str/struct.Chars.html#method.as_str
Replace absolute paths with relative ones
Modern compilers allow reaching external crates
like std or core via relative paths in modules
outside of lib.rs and main.rs.
Stabilize slice_partition_at_index
This stabilizes slice_partition_at_index, including renaming `partition_at_index*` -> `select_nth_unstable*`.
Closes#55300
r? `@Amanieu`