Spring cleaning is here! In the Fall! This commit removes quite a large amount
of deprecated functionality from the standard libraries. I tried to ensure that
only old deprecated functionality was removed.
This is removing lots and lots of deprecated features, so this is a breaking
change. Please consult the deprecation messages of the deleted code to see how
to migrate code forward if it still needs migration.
[breaking-change]
The `type_overflow` lint, doesn't catch the overflow for `i64` because
the overflow happens earlier in the parse phase when the `u64` as biggest
possible int gets casted to `i64` , without checking the for overflows.
We can't lint in the parse phase, so a refactoring of the `LitInt` type
was necessary.
The types `LitInt`, `LitUint` and `LitIntUnsuffixed` where merged to one
type `LitInt` which stores it's value as `u64`. An additional parameter was
added which indicate the signedness of the type and the sign of the value.
for `~str`/`~[]`.
Note that `~self` still remains, since I forgot to add support for
`Box<self>` before the snapshot.
How to update your code:
* Instead of `~EXPR`, you should write `box EXPR`.
* Instead of `~TYPE`, you should write `Box<Type>`.
* Instead of `~PATTERN`, you should write `box PATTERN`.
[breaking-change]
Clearly storing them as `char` is semantically nicer, but this also
fixes a bug whereby `quote_expr!(cx, 'a')` wasn't working, because the
code created by quotation was not matching the actual AST definitions.
There's now one unified way to return things from a macro, instead of
being able to choose the `AnyMacro` trait or the `MRItem`/`MRExpr`
variants of the `MacResult` enum. This does simplify the logic handling
the expansions, but the biggest value of this is it makes macros in (for
example) type position easier to implement, as there's this single thing
to modify.
By my measurements (using `-Z time-passes` on libstd and librustc etc.),
this appears to have little-to-no impact on expansion speed. There are
presumably larger costs than the small number of extra allocations and
virtual calls this adds (notably, all `macro_rules!`-defined macros have
not changed in behaviour, since they had to use the `AnyMacro` trait
anyway).
A couple of syntax extensions manually expanded expressions, but it
wasn't done universally, most noticably inside of asm!().
There's also a bit of random cleanup.
Closes#11692. Instead of returning the original expression, a dummy expression
(with identical span) is returned. This prevents infinite loops of failed
expansions as well as odd double error messages in certain situations.
This means that compilation continues for longer, and so we can see more
errors per compile. This is mildly more user-friendly because it stops
users having to run rustc n times to see n macro errors: just run it
once to see all of them.
This extension can be used to concatenate string literals at compile time. C has
this useful ability when placing string literals lexically next to one another,
but this needs to be handled at the syntax extension level to recursively expand
macros.
The major use case for this is something like:
macro_rules! mylog( ($fmt:expr $($arg:tt)*) => {
error2!(concat!(file!(), ":", line!(), " - ", $fmt) $($arg)*);
})
Where the mylog macro will automatically prepend the filename/line number to the
beginning of every log message.