ToStr, Encodable and Decodable are not marked as such, since they're
already expensive, and lead to large methods, so inlining will bloat the
metadata & the binaries.
This means that something like
#[deriving(Eq)]
struct A { x: int }
creates an instance like
#[doc = "Automatically derived."]
impl ::std::cmp::Eq for A {
#[inline]
fn eq(&self, __arg_0: &A) -> ::bool {
match *__arg_0 {
A{x: ref __self_1_0} =>
match *self {
A{x: ref __self_0_0} => true && __self_0_0.eq(__self_1_0)
}
}
}
#[inline]
fn ne(&self, __arg_0: &A) -> ::bool {
match *__arg_0 {
A{x: ref __self_1_0} =>
match *self {
A{x: ref __self_0_0} => false || __self_0_0.ne(__self_1_0)
}
}
}
}
(The change being the `#[inline]` attributes.)
These two attributes are no longer useful now that Rust has decided to leave
segmented stacks behind. It is assumed that the rust task's stack is always
large enough to make an FFI call (due to the stack being very large).
There's always the case of stack overflow, however, to consider. This does not
change the behavior of stack overflow in Rust. This is still normally triggered
by the __morestack function and aborts the whole process.
C stack overflow will continue to corrupt the stack, however (as it did before
this commit as well). The future improvement of a guard page at the end of every
rust stack is still unimplemented and is intended to be the mechanism through
which we attempt to detect C stack overflow.
Closes#8822Closes#10155
This rearranges the deriving code so that #[deriving] a trait on a field
that doesn't implement that trait will point to the field in question,
e.g.
struct NotEq; // doesn't implement Eq
#[deriving(Eq)]
struct Foo {
ok: int,
also_ok: ~str,
bad: NotEq // error points here.
}
Unfortunately, this means the error is disconnected from the `deriving`
itself but there's no current way to pass that information through to
rustc except via the spans, at the moment.
Fixes#7724.
This adds bindings to the remaining functions provided by libuv, all of which
are useful operations on files which need to get exposed somehow.
Some highlights:
* Dropped `FileReader` and `FileWriter` and `FileStream` for one `File` type
* Moved all file-related methods to be static methods under `File`
* All directory related methods are still top-level functions
* Created `io::FilePermission` types (backed by u32) that are what you'd expect
* Created `io::FileType` and refactored `FileStat` to use FileType and
FilePermission
* Removed the expanding matrix of `FileMode` operations. The mode of reading a
file will not have the O_CREAT flag, but a write mode will always have the
O_CREAT flag.
Closes#10130Closes#10131Closes#10121
This commit moves all thread-blocking I/O functions from the std::os module.
Their replacements can be found in either std::rt::io::file or in a hidden
"old_os" module inside of native::file. I didn't want to outright delete these
functions because they have a lot of special casing learned over time for each
OS/platform, and I imagine that these will someday get integrated into a
blocking implementation of IoFactory. For now, they're moved to a private module
to prevent bitrot and still have tests to ensure that they work.
I've also expanded the extensions to a few more methods defined on Path, most of
which were previously defined in std::os but now have non-thread-blocking
implementations as part of using the current IoFactory.
The api of io::file is in flux, but I plan on changing it in the next commit as
well.
Closes#10057
This extension can be used to concatenate string literals at compile time. C has
this useful ability when placing string literals lexically next to one another,
but this needs to be handled at the syntax extension level to recursively expand
macros.
The major use case for this is something like:
macro_rules! mylog( ($fmt:expr $($arg:tt)*) => {
error2!(concat!(file!(), ":", line!(), " - ", $fmt) $($arg)*);
})
Where the mylog macro will automatically prepend the filename/line number to the
beginning of every log message.
- `begin_unwind` is now generic over any `T: Any + Send`.
- Every value you fail with gets boxed as an `~Any`.
- Because of implementation details, `&'static str` and `~str` are still
handled specially behind the scenes.
- Changed the big macro source string in libsyntax to a raw string
literal, and enabled doc comments there.
Used nowhere, and these are likely incorrect anyway: self needs to be
dereferenced once more otherwise the method calls will be reusing the
current impl... bam! Infinite recursion.
The general idea is to remove conditions completely from I/O, so in the meantime
remove the read_error condition to mean the same thing as the io_error condition.
Previously an ExprLit was created *per byte* causing a huge increase in memory
bloat. This adds a new `lit_binary` to contain a literal of binary data, which
is currently only used by the include_bin! syntax extension. This massively
speeds up compilation times of the shootout-k-nucleotide-pipes test
before:
time: 469s
memory: 6GB
assertion failure in LLVM (section too large)
after:
time: 2.50s
memory: 124MB
Closes#2598
Previously an ExprLit was created *per byte* causing a huge increase in memory
bloat. This adds a new `lit_binary` to contain a literal of binary data, which
is currently only used by the include_bin! syntax extension. This massively
speeds up compilation times of the shootout-k-nucleotide-pipes test
before:
time: 469s
memory: 6GB
assertion failure in LLVM (section too large)
after:
time: 2.50s
memory: 124MB
Closes#2598
Standardize the is_sep() functions to be the same in both posix and
windows, and re-export from path. Update extra::glob to use this.
Remove the usage of either, as it's going away.
Move the WindowsPath-specific methods out of WindowsPath and make them
top-level functions of path::windows instead. This way you cannot
accidentally write code that will fail to compile on non-windows
architectures without typing ::windows anywhere.
Remove GenericPath::from_c_str() and just impl BytesContainer for
CString instead.
Remove .join_path() and .push_path() and just implement BytesContainer
for Path instead.
Remove FilenameDisplay and add a boolean flag to Display instead.
Remove .each_parent(). It only had one caller, so just inline its
definition there.
* Allow named parameters to specify width/precision
* Intepret the format string '0$' as "width is the 0th argument" instead of
thinking the lone '0' was the sign-aware-zero-padding flag. To get both you'd
need to put '00$' which makes more sense if you want both to happen.
Closes#9669
Add a new trait BytesContainer that is implemented for both byte vectors
and strings.
Convert Path::from_vec and ::from_str to one function, Path::new().
Remove all the _str-suffixed mutation methods (push, join, with_*,
set_*) and modify the non-suffixed versions to use BytesContainer.
Remove the old path.
Rename path2 to path.
Update all clients for the new path.
Also make some miscellaneous changes to the Path APIs to help the
adoption process.
For the benefit of the pretty printer we want to keep track of how
string literals in the ast were originally represented in the source
code.
This commit changes parser functions so they don't extract strings from
the token stream without at least also returning what style of string
literal it was. This is stored in the resulting ast node for string
literals, obviously, for the package id in `extern mod = r"package id"`
view items, for the inline asm in `asm!()` invocations.
For `asm!()`'s other arguments or for `extern "Rust" fn()` items, I just
the style of string, because it seemed disproportionally cumbersome to
thread that information through the string processing that happens with
those string literals, given the limited advantage raw string literals
would provide in these positions.
The other syntax extensions don't seem to store passed string literals
in the ast, so they also discard the style of strings they parse.