libstd: Implement `StrBuf`, a new string buffer type like `Vec`, and port all code over to use it.
Rebased & tests-fixed version of https://github.com/mozilla/rust/pull/13269
This change prepares `rustc` to accept private fields by default. These changes will have to go through a snapshot before the rest of the changes can happen.
This change is in preparation for #8122. Nothing is currently done with these
visibility qualifiers, they are just parsed and accepted by the compiler.
RFC: 0004-private-fields
`TotalEq` is now just an assertion about the `Eq` impl of a
type (i.e. `==` is a total equality if a type implements `TotalEq`) so
the extra method is just confusing.
Also, a new method magically appeared as a hack to allow deriving to
assert that the contents of a struct/enum are also TotalEq, because the
deriving infrastructure makes it very hard to do anything but create a
trait method. (You didn't hear about this horrible work-around from me
:(.)
This is the first step to replacing OptVec with a new representation:
remove all mutability. Any mutations have to go via `Vec` and then make
to `OptVec`.
Many of the uses of OptVec are unnecessary now that Vec has no-alloc
emptiness (and have been converted to Vec): the only ones that really
need it are the AST and sty's (and so on) where there are a *lot* of
instances of them, and they're (mostly) immutable.
There is a broader revision (that does this across the board) pending
in #12675, but that is awaiting the arrival of more data (to decide
whether to keep OptVec alive by using a non-Vec internally).
For this code, the representation of lifetime lists needs to be the
same in both ScopeChain and in the ast and ty structures. So it
seemed cleanest to just use `vec_ng::Vec`, now that it has a cheaper
empty representation than the current `vec` code.
This functionality is not super-core and so doesn't need to be included
in std. It's possible that std may need rand (it does a little bit now,
for io::test) in which case the functionality required could be moved to
a secret hidden module and reexposed by librand.
Unfortunately, using #[deprecated] here is hard: there's too much to
mock to make it feasible, since we have to ensure that programs still
typecheck to reach the linting phase.
If #[feature(default_type_parameters)] is enabled for a crate, then
deriving(Hash) will expand with Hash<W: Writer> instead of Hash<SipState> so
more hash algorithms can be used.
Previously `ast::Arm` was always storing a single `ast::Expr` wrapped in an
`ast::Block` (for historical reasons, AIUI), so we might as just store
that expr directly.
Closes#3085.
Previously, format!("{a}{b}", a=foo(), b=bar()) has foo() and bar() run in a
nondeterminisc order. This is clearly a non-desirable property, so this commit
uses iteration over a list instead of iteration over a hash map to provide
deterministic code generation of these format arguments.
The most significant fix is for `syntax::ext::deriving::encodable`,
where one of the blocks of code, auspiciously containing `<S>` (recall
that Markdown allows arbitrary HTML to be contained inside it), was not
formatted as a code block, with a fun but messy effect.
These two containers are indeed collections, so their place is in
libcollections, not in libstd. There will always be a hash map as part of the
standard distribution of Rust, but by moving it out of the standard library it
makes libstd that much more portable to more platforms and environments.
This conveniently also removes the stuttering of 'std::hashmap::HashMap',
although 'collections::HashMap' is only one character shorter.
This patch merges IterBytes and Hash traits, which clears up the
confusion of using `#[deriving(IterBytes)]` to support hashing.
Instead, it now is much easier to use the new `#[deriving(Hash)]`
for making a type hashable with a stream hash.
Furthermore, it supports custom non-stream-based hashers, such as
if a value's hash was cached in a database.
This does not yet replace the old IterBytes-hash with this new
version.
The old method of building up a list of items and threading it through
all of the decorators was unwieldy and not really scalable as
non-deriving ItemDecorators become possible. The API is now that the
decorator gets an immutable reference to the item it's attached to, and
a callback that it can pass new items to. If we want to add syntax
extensions that can modify the item they're attached to, we can add that
later, but I think it'll have to be separate from ItemDecorator to avoid
strange ordering issues.
@huonw
The old method of building up a list of items and threading it through
all of the decorators was unwieldy and not really scalable as
non-deriving ItemDecorators become possible. The API is now that the
decorator gets an immutable reference to the item it's attached to, and
a callback that it can pass new items to. If we want to add syntax
extensions that can modify the item they're attached to, we can add that
later, but I think it'll have to be separate from ItemDecorator to avoid
strange ordering issues.
Error messages cleaned in librustc/middle
Error messages cleaned in libsyntax
Error messages cleaned in libsyntax more agressively
Error messages cleaned in librustc more aggressively
Fixed affected tests
Fixed other failing tests
Last failing tests fixed