paths, and construct paths for all definitions. Also, stop rewriting
DefIds for closures, and instead just load the closure data from
the original def-id, which may be in another crate.
This PR removes random remaining `Ident`s outside of libsyntax and performs general cleanup
In particular, interfaces of `Name` and `Ident` are tidied up, `Name`s and `Ident`s being small `Copy` aggregates are always passed to functions by value, and `Ident`s are never used as keys in maps, because `Ident` comparisons are tricky.
Although this PR closes https://github.com/rust-lang/rust/issues/6993 there's still work related to it:
- `Name` can be made `NonZero` to compress numerous `Option<Name>`s and `Option<Ident>`s but it requires const unsafe functions.
- Implementation of `PartialEq` on `Ident` should be eliminated and replaced with explicit hygienic, non-hygienic or member-wise comparisons.
- Finally, large parts of AST can potentially be converted to `Name`s in the same way as HIR to clearly separate identifiers used in hygienic and non-hygienic contexts.
r? @nrc
The major change here is in the tiny commit at the end and makes it so that we no longer emit lifetime intrinsics for allocas for function arguments. They are live for the whole function anyway, so the intrinsics add no value. This makes the resulting IR more clear, and reduces the peak memory usage and LLVM times by about 1-4%, depending on the crate.
The remaining changes are just preparatory cleanups and fixes for missing lifetime intrinsics.
Combining them seemed like a good idea at the time, but turns out that
handling lifetimes separately makes it somewhat easier to handle cases
where we don't want the intrinsics, and let's you see more easily where
the start/end pairs are.
The issues that the comments referred to were fixed before the PR even
landed but we never got around to remove the hack of skipping the
lifetime start.
The functions is useful for all kinds of fat pointers, but get_len()
just feels so wrong for trait object fat pointers. Let's use get_meta()
because that's rather neutral.
Currently `f32 % f32` will generate a link error on 32-bit MSVC because LLVM
will lower the operation to a call to the nonexistent function `fmodf`. Work
around in this in the backend by lowering to a call to `fmod` instead with
necessary extension/truncation between floats/doubles.
Closes#27859
Currently `f32 % f32` will generate a link error on 32-bit MSVC because LLVM
will lower the operation to a call to the nonexistent function `fmodf`. Work
around in this in the backend by lowering to a call to `fmod` instead with
necessary extension/truncation between floats/doubles.
Closes#27859
Updated all call sites that used the other contructors to uniformly
call `Lvalue::new_with_hint`, passing along the appropriate kind
of hint for each context.
Placated tidy in a few other places in datum.rs.
Added code to maintain these hints at runtime, and to conditionalize
drop-filling and calls to destructors.
In this early stage, we are using hints, so we are always free to
leave out a flag for a path -- then we just pass `None` as the
dropflag hint in the corresponding schedule cleanup call. But, once a
path has a hint, we must at least maintain it: i.e. if the hint
exists, we must ensure it is never set to "moved" if the data in
question might actually have been initialized. It remains sound to
conservatively set the hint to "initialized" as long as the true
drop-flag embedded in the value itself is up-to-date.
----
Here are some high-level details I want to point out:
* We maintain the hint in Lvalue::post_store, marking the lvalue as
moved. (But also continue drop-filling if necessary.)
* We update the hint on ExprAssign.
* We pass along the hint in once closures that capture-by-move.
* You only call `drop_ty` for state that does not have an associated hint.
If you have a hint, you must call `drop_ty_core` instead.
(Originally I passed the hint into `drop_ty` as well, to make the
connection to a hint more apparent, but the vast majority of
current calls to `drop_ty` are in contexts where no hint is
available, so it just seemed like noise in the resulting diff.)