This commit re-introduces the functionality of __morestack in a way that it was
not originally anticipated. Rust does not currently have segmented stacks,
rather just large stack segments. We do not detect when these stack segments are
overrun currently, but this commit leverages __morestack in order to check this.
This commit purges a lot of the old __morestack and stack limit C++
functionality, migrating the necessary chunks to rust. The stack limit is now
entirely maintained in rust, and the "main logic bits" of __morestack are now
also implemented in rust as well.
I put my best effort into validating that this currently builds and runs successfully on osx and linux 32/64 bit, but I was unable to get this working on windows. We never did have unwinding through __morestack frames, and although I tried poking at it for a bit, I was unable to understand why we don't get unwinding right now.
A focus of this commit is to implement as much of the logic in rust as possible. This involved some liberal usage of `no_split_stack` in various locations, along with some use of the `asm!` macro (scary). I modified a bit of C++ to stop calling `record_sp_limit` because this is no longer defined in C++, rather in rust.
Another consequence of this commit is that `thread_local_storage::{get, set}` must both be flagged with `#[rust_stack]`. I've briefly looked at the implementations on osx/linux/windows to ensure that they're pretty small stacks, and I'm pretty sure that they're definitely less than 20K stacks, so we probably don't have a lot to worry about.
Other things worthy of note:
* The default stack size is now 4MB instead of 2MB. This is so that when we request 2MB to call a C function you don't immediately overflow because you have consumed any stack at all.
* `asm!` is actually pretty cool, maybe we could actually define context switching with it?
* I wanted to add links to the internet about all this jazz of storing information in TLS, but I was only able to find a link for the windows implementation. Otherwise my suggestion is just "disassemble on that arch and see what happens"
* I put my best effort forward on arm/mips to tweak __morestack correctly, we have no ability to test this so an extra set of eyes would be useful on these spots.
* This is all really tricky stuff, so I tried to put as many comments as I thought were necessary, but if anything is still unclear (or I completely forgot to take something into account), I'm willing to write more!
This commit resumes management of the stack boundaries and limits when switching
between tasks. This additionally leverages the __morestack function to run code
on "stack overflow". The current behavior is to abort the process, but this is
probably not the best behavior in the long term (for deails, see the comment I
wrote up in the stack exhaustion routine).
This is 2x faster on 64-bit computers at generating anything larger
than 32-bits.
It has been verified against the canonical C implementation from the
website of the creator of ISAAC64.
Also, move `Rng.next` to `Rng.next_u32` and add `Rng.next_u64` to
take full advantage of the wider word width; otherwise Isaac64 will
always be squeezed down into a u32 wasting half the entropy and
offering no advantage over the 32-bit variant.
This moves all local_data stuff into the `local_data` module and only that
module alone. It also removes a fair amount of "super-unsafe" code in favor of
just vanilla code generated by the compiler at the same time.
Closes#8113
This removes the stacking of type parameters that occurs when invoking
trait methods, and fixes all places in the standard library that were
relying on it. It is somewhat awkward in places; I think we'll probably
want something like the `Foo::<for T>::new()` syntax.
Instead of a furious storm of idle callbacks we just have one. This is a major performance gain - around 40% on my machine for the ping pong bench.
Also in this PR is a cleanup commit for the scheduler code. Was previously up as a separate PR, but bors load + imminent merge hell led me to roll them together. Was #8549.
- Made naming schemes consistent between Option, Result and Either
- Changed Options Add implementation to work like the maybe monad (return None if any of the inputs is None)
- Removed duplicate Option::get and renamed all related functions to use the term `unwrap` instead
And before collect_failure. These are both running user dtors and need to be handled
in the task try/catch block and before the final task cleanup code.
In the first commit it is obvious why some of the barriers can be changed to ```Relaxed```, but it is not as obvious for the once I changed in ```kill.rs```. The rationale for those is documented as part of the documenting commit.
Also the last commit is a temporary hack to prevent kill signals from being received in taskgroup cleanup code, which could be fixed in a more principled way once the old runtime is gone.
old design the TLS held the scheduler struct, and the scheduler struct
held the active task. This posed all sorts of weird problems due to
how we wanted to use the contents of TLS. The cleaner approach is to
leave the active task in TLS and have the task hold the scheduler. To
make this work out the scheduler has to run inside a regular task, and
then once that is the case the context switching code is massively
simplified, as instead of three possible paths there is only one. The
logical flow is also easier to follow, as the scheduler struct acts
somewhat like a "token" indicating what is active.
These changes also necessitated changing a large number of runtime
tests, and rewriting most of the runtime testing helpers.
Polish level is "low", as I will very soon start on more scheduler
changes that will require wiping the polish off. That being said there
should be sufficient comments around anything complex to make this
entirely respectable as a standalone commit.
This moves the raw struct layout of closures, vectors, boxes, and strings into a
new `unstable::raw` module. This is meant to be a centralized location to find
information for the layout of these values.
As safe method, `repr`, is provided to convert a rust value to its raw
representation. Unsafe methods to convert back are not provided because they are
rarely used and too numerous to write an implementation for each (not much of a
common pattern).
If the TLS key is 0-sized, then the linux linker is apparently smart enough to
put everything at the same pointer. OSX on the other hand, will reserve some
space for all of them. To get around this, the TLS key now actuall consumes
space to ensure that it gets a unique pointer
cc #6004 and #3273
This is a rewrite of TLS to get towards not requiring `@` when using task local storage. Most of the rewrite is straightforward, although there are two caveats:
1. Changing `local_set` to not require `@` is blocked on #7673
2. The code in `local_pop` is some of the most unsafe code I've written. A second set of eyes should definitely scrutinize it...
The public-facing interface currently hasn't changed, although it will have to change because `local_data::get` cannot return `Option<T>`, nor can it return `Option<&T>` (the lifetime isn't known). This will have to be changed to be given a closure which yield `&T` (or as an Option). I didn't do this part of the api rewrite in this pull request as I figured that it could wait until when `@` is fully removed.
This also doesn't deal with the issue of using something other than functions as keys, but I'm looking into using static slices (as mentioned in the issues).