- The signature of the `*_equiv` methods of `HashMap` and similar structures
have changed, and now require one less level of indirection. Change your code
from:
```
hashmap.find_equiv(&"Hello");
hashmap.find_equiv(&&[0u8, 1, 2]);
```
to:
```
hashmap.find_equiv("Hello");
hashmap.find_equiv(&[0u8, 1, 2]);
```
- The generic parameter `T` of the `Hasher::hash<T>` method have become
`Sized?`. Downstream code must add `Sized?` to that method in their
implementations. For example:
```
impl Hasher<FnvState> for FnvHasher {
fn hash<T: Hash<FnvState>>(&self, t: &T) -> u64 { /* .. */ }
}
```
must be changed to:
```
impl Hasher<FnvState> for FnvHasher {
fn hash<Sized? T: Hash<FnvState>>(&self, t: &T) -> u64 { /* .. */ }
// ^^^^^^
}
```
[breaking-change]
I think it helps to show that the variables introduced in match blocks are indeed independent from the matched variable `x` (especially when `x` is still reachable inside those blocks and might be useful), so this renames them accordingly. Maybe some linter (or language-level warning?) will eventually warn about shadowing `x` in such cases. ;)
I’m not super happy about the matching-on-range example, as it’s too contrived (`e` and `x` are exactly the same here), but I couldn’t come up with something both simple and non-redundant.
This commit enables implementations of IndexMut for a number of collections,
including Vec, RingBuf, SmallIntMap, TrieMap, TreeMap, and HashMap. At the same
time this deprecates the `get_mut` methods on vectors in favor of using the
indexing notation.
cc #18424
I just found this patch which at some point solved a problem I encountered. Unfortunately I apparently dropped it before I managed to write a test case. I'll try to dig up the code that triggered the issue.
The error messages still aren’t as good as they were before DST, but they better
describe the actual problem, not mentioning `Sized` at all (because that bound
is normally implied, not explicitly stated).
Closes#17567.
Closes#18040.
Closes#18159.
When building for multiple targets, the initial 'make' invocation
always fails. The missing build stamp causes clean-llvm to be
invoked, but clean-llvm cleans *all* llvm builds. So what happens
is that 1) all llvm's are cleaned (a no-op), 2) llvm-${target1}
builds, 3) all llvm's are cleaned (deleting llvm-${target1}),
4) llvm-${target2} is built, 5) the remaining build for ${target1}
fails because llvm does not exist.
This makes the clean operation only clean the correct llvm build.
Should greatly reduce bot failures.
When building for multiple targets, the initial 'make' invocation
always fails. The missing build stamp causes clean-llvm to be
invoked, but clean-llvm cleans *all* llvm builds. So what happens
is that 1) all llvm's are cleaned (a no-op), 2) llvm-${target1}
builds, 3) all llvm's are cleaned (deleting llvm-${target1}),
4) llvm-${target2} is built, 5) the remaining build for ${target1}
fails because llvm does not exist.
This makes the clean operation only clean the correct llvm build.
Should greatly reduce bot failures.