This changes the documentation of `std::panic::set_hook` and `take_hook` to better explain how the default panic hook works. In particular the fact that `take_hook` registers the default hook, rather than no hook at all, was missing from the docs.
Remove old FIXME that no longer applies
it looks like Encodable was fallible at some point, but that was changed which means that this FIXME is no longer applicable
Remove old FIXMEs referring to #19596
Having an inner function that accepts a mutable reference seems to be the only way this can be expressed. Taking a mutable reference would call the same function with a new type &mut F which then causes the infinite recursion error in #19596.
Refine error span for trait error into borrowed expression
Extends the error span refinement in #106477 to drill into borrowed expressions just like tuples/struct/enum literals. For example,
```rs
trait Fancy {}
trait Good {}
impl <'a, T> Fancy for &'a T where T: Good {}
impl <S> Good for Option<S> where S: Iterator {}
fn want_fancy<F>(f: F) where F: Fancy {}
fn example() {
want_fancy(&Some(5));
// (BEFORE) ^^^^^^^^ `{integer}` is not an iterator
// (AFTER) ^ `{integer}` is not an iterator
}
```
Existing heuristics try to find the right part of the expression to "point at"; current heuristics look at e.g. struct constructors and tuples. This PR adds a new check for borrowed expressions when looking into a borrowed type.
Use restricted Damerau-Levenshtein distance for diagnostics
This replaces the existing Levenshtein algorithm with the Damerau-Levenshtein algorithm. This means that "ab" to "ba" is one change (a transposition) instead of two (a deletion and insertion). More specifically, this is a _restricted_ implementation, in that "ca" to "abc" cannot be performed as "ca" → "ac" → "abc", as there is an insertion in the middle of a transposition. I believe that errors like that are sufficiently rare that it's not worth taking into account.
This was first brought up [on IRLO](https://internals.rust-lang.org/t/18227) when it was noticed that the diagnostic for `prinltn!` (transposed L and T) was `print!` and not `println!`. Only a single existing UI test was effected, with the result being an objective improvement.
~~I have left the method name and various other references to the Levenshtein algorithm untouched, as the exact manner in which the edit distance is calculated should not be relevant to the caller.~~
r? ``@estebank``
``@rustbot`` label +A-diagnostics +C-enhancement
Improve building compiler artifacts output
Fixes#108051
``@Manishearth,`` ``@jyn514`` mentioned you might be interested in these changes to the outputs.
Document that CStr::as_ptr returns a type alias
Rustdoc resolves type aliases too eagerly #15823 which makes the [std re-export](https://doc.rust-lang.org/stable/std/ffi/struct.CStr.html#method.as_ptr) of `CStr::as_ptr` show `i8` instead of `c_char`. To work around this I've added info about `c_char` in the method's description.
BTW, I've also added a comment to what-not-to-do example in case someone copypasted it without reading the surrounding text.
create dummy placeholder crate to prevent compiler from panicing
This PR is to address the panic found in https://github.com/rust-lang/rust/issues/105700.
There are 2 separate things going on with this panic.
First the code could not generate a dummy response for crate fragment types when it hits the recursion limit.
This PR adds the method to the trait implementation for `DymmyResult` to be able to create a dummy crate node.
This stops the panic from happening.
The second thing that is not addressed (and maybe does not need addressing? 🤷🏻)
is that when you have multiple attributes it ends up treating attributes that follow another as being the result of expanding the former (maybe there is a better way to say that). So you end up hitting the recursion limit. Even though you would think there is no expansion happening here.
If you did not hit the recursion limit the compiler would output that `invalid_attribute` does not exists. But it currently exits before the resolution step when the recursion limit is reached here.