Excluding the functions inherited from the cast module last week (with marked
stability levels), these functions received the following treatment.
* size_of - this method has become #[stable]
* nonzero_size_of/nonzero_size_of_val - these methods have been removed
* min_align_of - this method is now #[stable]
* pref_align_of - this method has been renamed without the
`pref_` prefix, and it is the "default alignment" now. This decision is in line
with what clang does (see url linked in comment on function). This function
is now #[stable].
* init - renamed to zeroed and marked #[stable]
* uninit - marked #[stable]
* move_val_init - renamed to overwrite and marked #[stable]
* {from,to}_{be,le}{16,32,64} - all functions marked #[stable]
* swap/replace/drop - marked #[stable]
* size_of_val/min_align_of_val/align_of_val - these functions are marked
#[unstable], but will continue to exist in some form. Concerns have been
raised about their `_val` prefix.
[breaking-change]
`collections::list::List` was decided in a [team meeting](https://github.com/mozilla/rust/wiki/Meeting-weekly-2014-03-25) that it was unnecessary, so this PR removes it. Additionally, it removes an old and redundant purity test and fixes some warnings.
This commit contains an implementation of synchronous, bounded channels for
Rust. This is an implementation of the proposal made last January [1]. These
channels are built on mutexes, and currently focus on a working implementation
rather than speed. Receivers for sync channels have select() implemented for
them, but there is currently no implementation of select() for sync senders.
Rust will continue to provide both synchronous and asynchronous channels as part
of the standard distribution, there is no intent to remove asynchronous
channels. This flavor of channels is meant to provide an alternative to
asynchronous channels because like green tasks, asynchronous channels are not
appropriate for all situations.
[1] - https://mail.mozilla.org/pipermail/rust-dev/2014-January/007924.html
The proper usage of shared types is now sharing through `&self` rather than
`&mut self` because the mutable version will provide stronger guarantees (no
aliasing on *any* thread).
This is part of the overall strategy I would like to take when approaching
issue #11165. The only two I/O objects that reasonably want to be "split" are
the network stream objects. Everything else can be "split" by just creating
another version.
The initial idea I had was the literally split the object into a reader and a
writer half, but that would just introduce lots of clutter with extra interfaces
that were a little unnnecssary, or it would return a ~Reader and a ~Writer which
means you couldn't access things like the remote peer name or local socket name.
The solution I found to be nicer was to just clone the stream itself. The clone
is just a clone of the handle, nothing fancy going on at the kernel level.
Conceptually I found this very easy to wrap my head around (everything else
supports clone()), and it solved the "split" problem at the same time.
The cloning support is pretty specific per platform/lib combination:
* native/win32 - uses some specific WSA apis to clone the SOCKET handle
* native/unix - uses dup() to get another file descriptor
* green/all - This is where things get interesting. When we support full clones
of a handle, this implies that we're allowing simultaneous writes
and reads to happen. It turns out that libuv doesn't support two
simultaneous reads or writes of the same object. It does support
*one* read and *one* write at the same time, however. Some extra
infrastructure was added to just block concurrent writers/readers
until the previous read/write operation was completed.
I've added tests to the tcp/unix modules to make sure that this functionality is
supported everywhere.
This allows for easier static initialization of a pthread mutex, although the
windows mutexes still sadly suffer.
Note that this commit removes the clone() method from a mutex because it no
longer makes sense for pthreads mutexes. This also removes the Once type for
now, but it'll get added back shortly.
The `malloc` family of functions may return a null pointer for a
zero-size allocation, which should not be interpreted as an
out-of-memory error.
If the implementation does not return a null pointer, then handling
this will result in memory savings for zero-size types.
This also switches some code to `malloc_raw` in order to maintain a
centralized point for handling out-of-memory in `rt::global_heap`.
Closes#11634
Of the 8 static mutexes that are currently in-use by the compiler and its
libraries, 4 of them are currently used for one-time initialization. The
unforunate side effect of using a static mutex is that the mutex is leaked.
This primitive should provide the basis for efficiently keeping track of
one-time initialization as well as ensuring that it does not leak the internal
mutex that is used.
I have chosen to put this in libstd because libstd is currently making use of a
static initialization mutex (rt::local_ptr), but I can also see a more refined
version of this type being suitable to initialize FFI bindings (such as
initializing LLVM and initializing winsock networking on windows). I also intend
on adding "helper threads" to libnative, and those will greatly benefit from a
simple "once" primitive rather than always reinventing the wheel by using
mutexes and bools.
I would much rather see this primitive built on a mutex that blocks green
threads appropriately, but that does not exist at this time, so it does not
belong outside of `std::unstable`.
For now, this moves the following modules to std::sync
* UnsafeArc (also removed unwrap method)
* mpsc_queue
* spsc_queue
* atomics
* mpmc_bounded_queue
* deque
We may want to remove some of the queues, but for now this moves things out of
std::rt into std::sync
This moves the locking/waiting methods to returning an RAII struct instead of
relying on closures. Additionally, this changes the methods to all take
'&mut self' to discourage recursive locking. The new method to block is to call
`wait` on the returned RAII structure instead of calling it on the lock itself
(this enforces that the lock is held).
At the same time, this improves the Mutex interface a bit by allowing
destruction of non-initialized members and by allowing construction of an empty
mutex (nothing initialized inside).
This mutex is built on top of pthreads for unix and the related windows apis on
windows. This is a straight port of the lock_and_signal type from C++ to rust.
Almost all operations on the type are unsafe, and it's definitely not
recommended for general use.
Closes#9105