This commit improves the compile time of `rustc_platform_intrinsics` from 23s to
3.6s if compiling with `-O` and from 77s to 17s if compiling with `-O -g`. The
compiled rlib size also drops from 3.1M to 1.2M.
The wins here were gained by removing the destructors associated with `Type` by
removing the internal `Box` and `Vec` indirections. These destructors meant that
a lot of landing pads and extra code were generated to manage the runtime
representations. Instead everything can basically be statically computed and
shoved into rodata, so all we need is a giant string compare to lookup what's
what.
Closes#28273
This defines the `_mm256_blendv_pd` and `_mm256_blendv_ps` intrinsics.
The `_mm256_blend_pd` and `_mm256_blend_ps` intrinsics are not available
as LLVM intrinsics. In Clang they are implemented using the
shufflevector builtin.
Intel reference: https://software.intel.com/en-us/node/524070.
This defines `_mm256_broadcast_ps` and `_mm256_broadcast_pd`. The `_ss`
and `_sd` variants are not supported by LLVM. In Clang these intrinsics
are implemented as inline functions in C++.
Intel reference: https://software.intel.com/en-us/node/514144.
Note: the argument type should really be "0hPc" (a pointer to a vector
of half the width), but internally the LLVM intrinsic takes a pointer to
a signed integer, and for any other type LLVM will complain. This means
that a transmute is required to call these intrinsics.
The AVX2 broadcast intrinsics `_mm256_broadcastss_ps` and
`_mm256_broadcastsd_pd` are not available as LLVM intrinsics. In Clang
they are implemented using the shufflevector builtin.
The file it generates had been modified, but instead the generator
should have been modified, and the file regenerated. This merges the
modifications into the template in the generator.
This defines the following intrinsics for 128 and 256 bit vectors of f32
and f64:
* `fmadd`
* `fmaddsub`
* `fmsub`
* `fmsubadd`
* `fnmadd`
* `fnmsub`
The `_sd` and `_ss` variants are not included yet.
Intel intrinsic reference: https://software.intel.com/en-us/node/523929
The intrinsics there are listed under AVX2, but in the Intel Intrinsic
Guide they are part of the "FMA" technology, and LLVM puts them under
FMA, not AVX2.
The MinGW-based Python implementations would automatically do this, but if we
want to use Python from the official downloads our usage of `/` instead of `\`
can wreak havoc. In a few select locations just use `os.path.normpath` do do the
conversions properly for us.
use CXX value found at configure time inside run-make tests.
it permits OpenBSD to pass llvm-module-pass test (which use CXX
variable).
r? @alexcrichton
This commit is the start of a series of commits which start to replace the
makefiles with a Cargo-based build system. The aim is not to remove the
makefiles entirely just yet but rather just replace the portions that invoke the
compiler to do the bootstrap. This commit specifically adds enough support to
perform the bootstrap (and all the cross compilation within) along with
generating documentation.
More commits will follow up in this series to actually wire up the makefiles to
call this build system, so stay tuned!
Issue #31109 uncovered two semi-related problems:
* A panic in `str::parse::<f64>`
* A panic in `rustc::middle::const_eval::lit_to_const` where the result of float parsing was unwrapped.
This series of commits fixes both issues and also drive-by-fixes some things I noticed while tracking down the parsing panic.
This pull request adds support for [Illumos](http://illumos.org/)-based operating systems: SmartOS, OpenIndiana, and others. For now it's x86-64 only, as I'm not sure if 32-bit installations are widespread. This PR is based on #28589 by @potatosalad, and also closes#21000, #25845, and #25846.
Required changes in libc are already merged: https://github.com/rust-lang-nursery/libc/pull/138
Here's a snapshot required to build a stage0 compiler:
https://s3-eu-west-1.amazonaws.com/nbaksalyar/rustc-sunos-snapshot.tar.gz
It passes all checks from `make check`.
There are some changes I'm not quite sure about, e.g. macro usage in `src/libstd/num/f64.rs` and `DirEntry` structure in `src/libstd/sys/unix/fs.rs`, so any comments on how to rewrite it better would be greatly appreciated.
Also, LLVM configure script might need to be patched to build it successfully, or a pre-built libLLVM should be used. Some details can be found here: https://llvm.org/bugs/show_bug.cgi?id=25409
Thanks!
r? @brson
This aligns with unicode recommendations and should be stable for all future
unicode releases. See http://unicode.org/reports/tr31/#R3.
This renames `libsyntax::lexer::is_whitespace` to `is_pattern_whitespace`
so potentially breaks users of libsyntax.
Add tables of small powers of ten used in the fast path. The tables are redundant: We could also use the big, more accurate table and round the value to the correct type (in fact we did just that before this commit). However, the rounding is extra work and slows down the fast path.
Because only very small exponents enter the fast path, the table and thus the space overhead is negligible. Speed-wise, this is a clear win on a [benchmark] comparing the fast path to a naive, hand-optimized, inaccurate algorithm. Specifically, this change narrows the gap from a roughly 5x difference to a roughly 3.4x difference.
[benchmark]: https://gist.github.com/Veedrac/dbb0c07994bc7882098e
Add tables of small powers of ten used in the fast path. The tables are redundant: We could also use the big, more accurate table and round the value to the correct type (in fact we did just that before this commit). However, the rounding is extra work and slows down the fast path.
Because only very small exponents enter the fast path, the table and thus the space overhead is negligible. Speed-wise, this is a clear win on a [benchmark] comparing the fast path to a naive, hand-optimized, inaccurate algorithm. Specifically, this change narrows the gap from a roughly 5x difference to a roughly 3.4x difference.
[benchmark]: https://gist.github.com/Veedrac/dbb0c07994bc7882098e
As mentioned in #29734, the range comparison closure can be improved.
The LLVM IR and the assembly from the new version are much simpler and
unfortunately we cannot rely on the compiler to optimise this much, as
it would need to know that `lo <= hi`.
Besides from simpler code, there might also be a performance
advantage, although it is unlikely to appear on benchmarks, as we are
doing a binary search, which should always involve few comparisons.
The code is available on the playpen for ease of comparison:
http://is.gd/4raMmH
This handles cases when the LLVM used isn't configured will the 'usual'
targets. Also, cases where LLVM is shared are also handled (ie with
`LD_LIBRARY_PATH` etc).
This commit is the standard API stabilization commit for the 1.6 release cycle.
The list of issues and APIs below have all been through their cycle-long FCP and
the libs team decisions are listed below
Stabilized APIs
* `Read::read_exact`
* `ErrorKind::UnexpectedEof` (renamed from `UnexpectedEOF`)
* libcore -- this was a bit of a nuanced stabilization, the crate itself is now
marked as `#[stable]` and the methods appearing via traits for primitives like
`char` and `str` are now also marked as stable. Note that the extension traits
themeselves are marked as unstable as they're imported via the prelude. The
`try!` macro was also moved from the standard library into libcore to have the
same interface. Otherwise the functions all have copied stability from the
standard library now.
* The `#![no_std]` attribute
* `fs::DirBuilder`
* `fs::DirBuilder::new`
* `fs::DirBuilder::recursive`
* `fs::DirBuilder::create`
* `os::unix::fs::DirBuilderExt`
* `os::unix::fs::DirBuilderExt::mode`
* `vec::Drain`
* `vec::Vec::drain`
* `string::Drain`
* `string::String::drain`
* `vec_deque::Drain`
* `vec_deque::VecDeque::drain`
* `collections::hash_map::Drain`
* `collections::hash_map::HashMap::drain`
* `collections::hash_set::Drain`
* `collections::hash_set::HashSet::drain`
* `collections::binary_heap::Drain`
* `collections::binary_heap::BinaryHeap::drain`
* `Vec::extend_from_slice` (renamed from `push_all`)
* `Mutex::get_mut`
* `Mutex::into_inner`
* `RwLock::get_mut`
* `RwLock::into_inner`
* `Iterator::min_by_key` (renamed from `min_by`)
* `Iterator::max_by_key` (renamed from `max_by`)
Deprecated APIs
* `ErrorKind::UnexpectedEOF` (renamed to `UnexpectedEof`)
* `OsString::from_bytes`
* `OsStr::to_cstring`
* `OsStr::to_bytes`
* `fs::walk_dir` and `fs::WalkDir`
* `path::Components::peek`
* `slice::bytes::MutableByteVector`
* `slice::bytes::copy_memory`
* `Vec::push_all` (renamed to `extend_from_slice`)
* `Duration::span`
* `IpAddr`
* `SocketAddr::ip`
* `Read::tee`
* `io::Tee`
* `Write::broadcast`
* `io::Broadcast`
* `Iterator::min_by` (renamed to `min_by_key`)
* `Iterator::max_by` (renamed to `max_by_key`)
* `net::lookup_addr`
New APIs (still unstable)
* `<[T]>::sort_by_key` (added to mirror `min_by_key`)
Closes#27585Closes#27704Closes#27707Closes#27710Closes#27711Closes#27727Closes#27740Closes#27744Closes#27799Closes#27801
cc #27801 (doesn't close as `Chars` is still unstable)
Closes#28968
Quite a bit of cruft in the valgrind suppressions. I started from a clean slate and found a few unique failures; this commit also moves the tests "fixed" by these suppressions into run-pass-valgrind.
* Delete `sys::unix::{c, sync}` as these are now all folded into libc itself
* Update all references to use `libc` as a result.
* Update all references to the new flat namespace.
* Moves all windows bindings into sys::c