This gets rid of the 'experimental' level, removes the non-staged_api
case (i.e. stability levels for out-of-tree crates), and lets the
staged_api attributes use 'unstable' and 'deprecated' lints.
This makes the transition period to the full feature staging design
a bit nicer.
This removes the needlessly constricting bound on `intrinsics::type_Id` and `TypeId::of`. Also fixes an ICE where using bounds on type parameters in extern blocks fails to resolve the used traits.
This partially implements the feature staging described in the
[release channel RFC][rc]. It does not yet fully conform to the RFC as
written, but does accomplish its goals sufficiently for the 1.0 alpha
release.
It has three primary user-visible effects:
* On the nightly channel, use of unstable APIs generates a warning.
* On the beta channel, use of unstable APIs generates a warning.
* On the beta channel, use of feature gates generates a warning.
Code that does not trigger these warnings is considered 'stable',
modulo pre-1.0 bugs.
Disabling the warnings for unstable APIs continues to be done in the
existing (i.e. old) style, via `#[allow(...)]`, not that specified in
the RFC. I deem this marginally acceptable since any code that must do
this is not using the stable dialect of Rust.
Use of feature gates is itself gated with the new 'unstable_features'
lint, on nightly set to 'allow', and on beta 'warn'.
The attribute scheme used here corresponds to an older version of the
RFC, with the `#[staged_api]` crate attribute toggling the staging
behavior of the stability attributes, but the user impact is only
in-tree so I'm not concerned about having to make design changes later
(and I may ultimately prefer the scheme here after all, with the
`#[staged_api]` crate attribute).
Since the Rust codebase itself makes use of unstable features the
compiler and build system do a midly elaborate dance to allow it to
bootstrap while disobeying these lints (which would otherwise be
errors because Rust builds with `-D warnings`).
This patch includes one significant hack that causes a
regression. Because the `format_args!` macro emits calls to unstable
APIs it would trigger the lint. I added a hack to the lint to make it
not trigger, but this in turn causes arguments to `println!` not to be
checked for feature gates. I don't presently understand macro
expansion well enough to fix. This is bug #20661.
Closes#16678
[rc]: https://github.com/rust-lang/rfcs/blob/master/text/0507-release-channels.md
Next steps are to disable the existing out-of-tree behavior for stability attributes, and convert the remaining system to be feature-based per the RFC. During the first beta cycle we will set these lints to 'forbid'.
This commit aims to prepare the `std::hash` module for alpha by formalizing its
current interface whileholding off on adding `#[stable]` to the new APIs. The
current usage with the `HashMap` and `HashSet` types is also reconciled by
separating out composable parts of the design. The primary goal of this slight
redesign is to separate the concepts of a hasher's state from a hashing
algorithm itself.
The primary change of this commit is to separate the `Hasher` trait into a
`Hasher` and a `HashState` trait. Conceptually the old `Hasher` trait was
actually just a factory for various states, but hashing had very little control
over how these states were used. Additionally the old `Hasher` trait was
actually fairly unrelated to hashing.
This commit redesigns the existing `Hasher` trait to match what the notion of a
`Hasher` normally implies with the following definition:
trait Hasher {
type Output;
fn reset(&mut self);
fn finish(&self) -> Output;
}
This `Hasher` trait emphasizes that hashing algorithms may produce outputs other
than a `u64`, so the output type is made generic. Other than that, however, very
little is assumed about a particular hasher. It is left up to implementors to
provide specific methods or trait implementations to feed data into a hasher.
The corresponding `Hash` trait becomes:
trait Hash<H: Hasher> {
fn hash(&self, &mut H);
}
The old default of `SipState` was removed from this trait as it's not something
that we're willing to stabilize until the end of time, but the type parameter is
always required to implement `Hasher`. Note that the type parameter `H` remains
on the trait to enable multidispatch for specialization of hashing for
particular hashers.
Note that `Writer` is not mentioned in either of `Hash` or `Hasher`, it is
simply used as part `derive` and the implementations for all primitive types.
With these definitions, the old `Hasher` trait is realized as a new `HashState`
trait in the `collections::hash_state` module as an unstable addition for
now. The current definition looks like:
trait HashState {
type Hasher: Hasher;
fn hasher(&self) -> Hasher;
}
The purpose of this trait is to emphasize that the one piece of functionality
for implementors is that new instances of `Hasher` can be created. This
conceptually represents the two keys from which more instances of a
`SipHasher` can be created, and a `HashState` is what's stored in a
`HashMap`, not a `Hasher`.
Implementors of custom hash algorithms should implement the `Hasher` trait, and
only hash algorithms intended for use in hash maps need to implement or worry
about the `HashState` trait.
The entire module and `HashState` infrastructure remains `#[unstable]` due to it
being recently redesigned, but some other stability decision made for the
`std::hash` module are:
* The `Writer` trait remains `#[experimental]` as it's intended to be replaced
with an `io::Writer` (more details soon).
* The top-level `hash` function is `#[unstable]` as it is intended to be generic
over the hashing algorithm instead of hardwired to `SipHasher`
* The inner `sip` module is now private as its one export, `SipHasher` is
reexported in the `hash` module.
And finally, a few changes were made to the default parameters on `HashMap`.
* The `RandomSipHasher` default type parameter was renamed to `RandomState`.
This renaming emphasizes that it is not a hasher, but rather just state to
generate hashers. It also moves away from the name "sip" as it may not always
be implemented as `SipHasher`. This type lives in the
`std::collections::hash_map` module as `#[unstable]`
* The associated `Hasher` type of `RandomState` is creatively called...
`Hasher`! This concrete structure lives next to `RandomState` as an
implemenation of the "default hashing algorithm" used for a `HashMap`. Under
the hood this is currently implemented as `SipHasher`, but it draws an
explicit interface for now and allows us to modify the implementation over
time if necessary.
There are many breaking changes outlined above, and as a result this commit is
a:
[breaking-change]
This bound is probably unintentional and is unnecessarily
constricting.
To facilitate this change, it was also necessary to modify
resolve to recurse on and resolve type parameters in extern { }
blocks. This fixes an ICE when using bounds on type parameters
during the declaration of intrinsics.
This also adds tests for TypeId on both Sized and Unsized
tests as well as a test for using type parameters and bounds
in extern { } blocks.
This partially implements the feature staging described in the
[release channel RFC][rc]. It does not yet fully conform to the RFC as
written, but does accomplish its goals sufficiently for the 1.0 alpha
release.
It has three primary user-visible effects:
* On the nightly channel, use of unstable APIs generates a warning.
* On the beta channel, use of unstable APIs generates a warning.
* On the beta channel, use of feature gates generates a warning.
Code that does not trigger these warnings is considered 'stable',
modulo pre-1.0 bugs.
Disabling the warnings for unstable APIs continues to be done in the
existing (i.e. old) style, via `#[allow(...)]`, not that specified in
the RFC. I deem this marginally acceptable since any code that must do
this is not using the stable dialect of Rust.
Use of feature gates is itself gated with the new 'unstable_features'
lint, on nightly set to 'allow', and on beta 'warn'.
The attribute scheme used here corresponds to an older version of the
RFC, with the `#[staged_api]` crate attribute toggling the staging
behavior of the stability attributes, but the user impact is only
in-tree so I'm not concerned about having to make design changes later
(and I may ultimately prefer the scheme here after all, with the
`#[staged_api]` crate attribute).
Since the Rust codebase itself makes use of unstable features the
compiler and build system to a midly elaborate dance to allow it to
bootstrap while disobeying these lints (which would otherwise be
errors because Rust builds with `-D warnings`).
This patch includes one significant hack that causes a
regression. Because the `format_args!` macro emits calls to unstable
APIs it would trigger the lint. I added a hack to the lint to make it
not trigger, but this in turn causes arguments to `println!` not to be
checked for feature gates. I don't presently understand macro
expansion well enough to fix. This is bug #20661.
Closes#16678
[rc]: https://github.com/rust-lang/rfcs/blob/master/text/0507-release-channels.md
This commit performs a pass over the implementations of the new `String` trait
in the formatting module. Some implementations were removed as a conservative
move pending an upcoming convention about `String` implementations, and some
were added in order to retain consistency across the libraries. Specifically:
* All "smart pointers" implement `String` now, adding missing implementations
for `Arc` and `Rc`.
* The `Vec<T>` and `[T]` types no longer implement `String`.
* The `*const T` and `*mut T` type no longer implement `String`.
* The `()` type no longer implements `String`.
* The `Path` type's `Show` implementation does not surround itself with `Path
{}` (a minor tweak).
All implementations of `String` in this PR were also marked `#[stable]` to
indicate that the types will continue to implement the `String` trait regardless
of what it looks like.
This commit aims to prepare the `std::hash` module for alpha by formalizing its
current interface whileholding off on adding `#[stable]` to the new APIs. The
current usage with the `HashMap` and `HashSet` types is also reconciled by
separating out composable parts of the design. The primary goal of this slight
redesign is to separate the concepts of a hasher's state from a hashing
algorithm itself.
The primary change of this commit is to separate the `Hasher` trait into a
`Hasher` and a `HashState` trait. Conceptually the old `Hasher` trait was
actually just a factory for various states, but hashing had very little control
over how these states were used. Additionally the old `Hasher` trait was
actually fairly unrelated to hashing.
This commit redesigns the existing `Hasher` trait to match what the notion of a
`Hasher` normally implies with the following definition:
trait Hasher {
type Output;
fn reset(&mut self);
fn finish(&self) -> Output;
}
This `Hasher` trait emphasizes that hashing algorithms may produce outputs other
than a `u64`, so the output type is made generic. Other than that, however, very
little is assumed about a particular hasher. It is left up to implementors to
provide specific methods or trait implementations to feed data into a hasher.
The corresponding `Hash` trait becomes:
trait Hash<H: Hasher> {
fn hash(&self, &mut H);
}
The old default of `SipState` was removed from this trait as it's not something
that we're willing to stabilize until the end of time, but the type parameter is
always required to implement `Hasher`. Note that the type parameter `H` remains
on the trait to enable multidispatch for specialization of hashing for
particular hashers.
Note that `Writer` is not mentioned in either of `Hash` or `Hasher`, it is
simply used as part `derive` and the implementations for all primitive types.
With these definitions, the old `Hasher` trait is realized as a new `HashState`
trait in the `collections::hash_state` module as an unstable addition for
now. The current definition looks like:
trait HashState {
type Hasher: Hasher;
fn hasher(&self) -> Hasher;
}
The purpose of this trait is to emphasize that the one piece of functionality
for implementors is that new instances of `Hasher` can be created. This
conceptually represents the two keys from which more instances of a
`SipHasher` can be created, and a `HashState` is what's stored in a
`HashMap`, not a `Hasher`.
Implementors of custom hash algorithms should implement the `Hasher` trait, and
only hash algorithms intended for use in hash maps need to implement or worry
about the `HashState` trait.
The entire module and `HashState` infrastructure remains `#[unstable]` due to it
being recently redesigned, but some other stability decision made for the
`std::hash` module are:
* The `Writer` trait remains `#[experimental]` as it's intended to be replaced
with an `io::Writer` (more details soon).
* The top-level `hash` function is `#[unstable]` as it is intended to be generic
over the hashing algorithm instead of hardwired to `SipHasher`
* The inner `sip` module is now private as its one export, `SipHasher` is
reexported in the `hash` module.
And finally, a few changes were made to the default parameters on `HashMap`.
* The `RandomSipHasher` default type parameter was renamed to `RandomState`.
This renaming emphasizes that it is not a hasher, but rather just state to
generate hashers. It also moves away from the name "sip" as it may not always
be implemented as `SipHasher`. This type lives in the
`std::collections::hash_map` module as `#[unstable]`
* The associated `Hasher` type of `RandomState` is creatively called...
`Hasher`! This concrete structure lives next to `RandomState` as an
implemenation of the "default hashing algorithm" used for a `HashMap`. Under
the hood this is currently implemented as `SipHasher`, but it draws an
explicit interface for now and allows us to modify the implementation over
time if necessary.
There are many breaking changes outlined above, and as a result this commit is
a:
[breaking-change]
This PR introduces `isize` and `usize` modules to `core` and `std`, and
deprecates the existing `int` and `uint` modules. The rustdoc primitive
type links now point to these new modules.
Due to deprecation this is a:
[breaking-change]
This commit takes a first pass at stabilizing `std::thread`:
* It removes the `detach` method in favor of two constructors -- `spawn`
for detached threads, `scoped` for "scoped" (i.e., must-join)
threads. This addresses some of the surprise/frustrating debug
sessions with the previous API, in which `spawn` produced a guard that
on destruction joined the thread (unless `detach` was called).
The reason to have the division in part is that `Send` will soon not
imply `'static`, which means that `scoped` thread creation can take a
closure over *shared stack data* of the parent thread. On the other
hand, this means that the parent must not pop the relevant stack
frames while the child thread is running. The `JoinGuard` is used to
prevent this from happening by joining on drop (if you have not
already explicitly `join`ed.) The APIs around `scoped` are
future-proofed for the `Send` changes by taking an additional lifetime
parameter. With the current definition of `Send`, this is forced to be
`'static`, but when `Send` changes these APIs will gain their full
flexibility immediately.
Threads that are `spawn`ed, on the other hand, are detached from the
start and do not yield an RAII guard.
The hope is that, by making `scoped` an explicit opt-in with a very
suggestive name, it will be drastically less likely to be caught by a
surprising deadlock due to an implicit join at the end of a scope.
* The module itself is marked stable.
* Existing methods other than `spawn` and `scoped` are marked stable.
The migration path is:
```rust
Thread::spawn(f).detached()
```
becomes
```rust
Thread::spawn(f)
```
while
```rust
let res = Thread::spawn(f);
res.join()
```
becomes
```rust
let res = Thread::scoped(f);
res.join()
```
[breaking-change]