Use rls-data crate
This basically pulls out a bunch of data structures used by save-analysis for serialization into an external crate, and pulls that crate in using Rustbuild. The RLS can then share these data structures with the compiler which in some cases will allow more efficient communication between the compiler and the RLS (i.e., without serialisation).
Along the way, I have to pull in rls-span, which is the RLS's way of defining spans (more type-safe than the compiler's built-in way). This is basically just to convert from compiler spans to RLS spans.
I also pull in the crates.io version of rustc-serialize, which is a bit annoying, but seems to be the only way to have serialisable data in an external crate. To make this work, all of the save-analysis crate has to use this version too (cc #40527).
Finally I pull in a line from #40347 to make the unstable crate checking stuff working.
There are a lot of changes to save-analysis but they are all mechanical and trivial - changing from using `From` to `Into` (because of orphan rules) being the main thing.
r? @alexcrichton
[rustbuild] add a way to run command after failure
This is a simple way to workaround the debugging issues caused by the rustc
wrapper used in the bootstrap process. Namely, it uses some obscure environment
variables and you can't just copy the failed command and run it in the shell or
debugger to examine the failure more closely.
With `--on-fail` its possible to run an arbitrary command within exactly the
same environment under which rustc failed. Theres's multiple ways to use this
new flag:
$ python x.py build --stage=1 --on-fail=env
would print a list of environment variables and the failed command, so a
few copy-pastes and you now can run the same rust in your shell outside the
bootstrap system.
$ python x.py build --stage=1 --on-fail=bash
Is a more useful variation of the command above in that it launches a whole
shell with environment already in place! All that's left to do is copy-paste
the command just above the shell prompt!
Fixes#38686Fixes#38221
This is a simple way to workaround the debugging issues caused by the rustc
wrapper used in the bootstrap process. Namely, it uses some obscure environment
variables and you can’t just copy the failed command and run it in the shell or
debugger to examine the failure more closely.
With `--on-fail` its possible to run an arbitrary command within exactly the
same environment under which rustc failed. Theres’s multiple ways to use this
new flag:
$ python x.py build --stage=1 --on-fail=env
would print a list of environment variables and the failed command, so a
few copy-pastes and you now can run the same rust in your shell outside the
bootstrap system.
$ python x.py build --stage=1 --on-fail=bash
Is a more useful variation of the command above in that it launches a whole
shell with environment already in place! All that’s left to do is copy-paste
the command just above the shell prompt!
Fixes#38686Fixes#38221
This commit changes all MSVC rustc binaries to be compiled with
`-C target-feature=+crt-static` to link statically against the MSVCRT instead of
dynamically (as it does today). This also necessitates compiling LLVM in a
different fashion, ensuring it's compiled with `/MT` instead of `/MD`.
cc #37406
This commit changes all tools and such to get compiled in stage0, not in
later stages. The purpose of this commit is to cut down dependencies on later
stages for future modifications to the build system. Notably we're going to be
adding builders that produce a full suite of cross-compiled artifacts for a
particular host, and that shouldn't compile the `x86_64-unknown-linux-gnu`
compiler more than once. Currently dependencies on, for example, the error index
end up compiling the `x86_64-unknown-linux-gnu` compiler more than necessary.
As a result here we move many dependencies on these tools to being produced by a
stage0 compiler, not a stage1+ compiler. None of these tools actually need to be
staged at all, so they'll exhibit consistent behavior across the stages.
add preliminary support for incremental compilation to rustbuild.py
This implements the integration described in #37929. It requires the use of a local nightly as your bootstrap compiler. The setup is described in `src/bootstrap/README.md`.
This does NOT implement the "copy stage0 libs to stage1" optimization described in #37929, just because that seems orthogonal to me.
In local testing, I do not yet see any incremental re-use when building rustc. I'm not sure why that is, more investigation needed.
(For these reasons, this is not marked as fixing the relevant issue.)
r? @alexcrichton -- I included one random cleanup (`Step::noop()`) that turned out to not be especially relevant. Feel free to tell me you liked it better the old way.
This not only avoids the small – and unnecessary – constant overhead for each compiler invocation,
but also helps somewhat by only having “correct” rustc processes to look for in `/proc/`.
This also makes the wrapper behave effectively as a regular exec wrapper its intended to be.
Currently libraries installed by rustbuild on OSX have an incorrect
`LC_ID_DYLIB` directive located in the dynamic libraries that are
installed. The directive we expect looks like:
@rpath/libstd.dylib
Which means that if you want to find that dynamic library you should
look at the dylib's other `@rpath` directives. Typically our `@rpath`
directives look like `@loader_path/../lib` for the compiler as that's
where the installed libraries will be located. Currently, though,
rustbuild produces dylibs with the directive that looks like:
/Users/rustbuild/src/rust-buildbot/slave/nightly-dist-rustc-mac/build/build/x86_64-apple-darwin/stage1-std/x86_64-apple-darwin/release/deps/libstd-713ad88203512705.dylib
In other words, the build directory is encoded erroneously. The compiler
already [knows how] to change this directive, but it only passes that
argument when `-C rpath` is also passed. The rustbuild system, however,
explicitly [does not pass] this option explicitly and instead bakes its
own. This logic then also erroneously didn't pass `-Wl,-install_name`
like the compiler.
[knows how]: 4a008cccaa/src/librustc_trans/back/linker.rs (L210-L214)
[does not pass]: 4a008cccaa/src/bootstrap/bin/rustc.rs (L133-L158)
To fix this regression this patch introduces a new `-Z` flag, `-Z
osx-rpath-install-name` which basically just forces the compiler to take
the previous `-install_name` branch when creating a dynamic library.
Hopefully we can sort out a better rpath story in the future, but for
now this "hack" should suffice in getting our nightly builds back to the
same state as before.
Closes#38430
This commit enables by default passing the `-C debuginfo=1` argument to the
compiler for the stable, beta, and nightly release channels. A new configure
option was also added, `--enable-debuginfo-lines`, to enable this behavior in
developer builds as well.
Closes#36452
The organization in rustbuild was a little odd at the moment where the `lib.rs`
was quite small but the binary `main.rs` was much larger. Unfortunately as well
there was a `build/` directory with the implementation of the build system, but
this directory was ignored by GitHub on the file-search prompt which was a
little annoying.
This commit reorganizes rustbuild slightly where all the library files (the
build system) is located directly inside of `src/bootstrap` and all the binaries
now live in `src/bootstrap/bin` (they're small). Hopefully this should allow
GitHub to index and allow navigating all the files while maintaining a
relatively similar layout to the other libraries in `src/`.