The LLVM API that we use to encode coverage mappings already has its own code
for removing unused coverage expressions and renumbering the rest.
This lets us get rid of our own complex renumbering code, making it easier to
change our coverage code in other ways.
After coverage instrumentation and MIR transformations, we can sometimes end up
with coverage expressions that always have a value of zero. Any expression
operand that refers to an always-zero expression can be replaced with a literal
`Operand::Zero`, making the emitted coverage mapping data smaller and simpler.
This simplification step is mostly redundant with the simplifications performed
inline in `expressions_with_regions`, except that it does a slightly more
thorough job in some cases (because it checks for always-zero expressions
*after* other simplifications).
However, adding this simplification step will then let us greatly simplify that
code, without affecting the quality of the emitted coverage maps.
implement `intercrate_ambiguity_causes` in the new solver
I added some comments but this is still somewhat of a mess. I think we should for the most part be able to treat all of this as a black box, so I can accept that this code isn't too great.
I also believe that some of the weirdness here is unavoidable, as proof trees - and their visitor - hide semantically relevant information, so they cannot perfectly represent the actual solver behavior.
There are some known bugs here when testing with `./x.py test tests/ui --bless -- --target-rustcflags -Ztrait-solver=next-coherence`. While I haven't diagnosed them all in detail I believe we are able to handle them all separately
- `structurally_normalize` currently does not normalize opaque types, resulting in divergence between the solver internal `trait_ref_is_knowable` and the one when computing intercrate ambiguity causes.
- we don't add an `intercrate_ambiguity_cause` for reserved impls
- we should `deeply_normalize` the trait ref before printing it, that requires a "best effort" version of `deeply_normalize`
r? `@compiler-errors`
Fix `ui-fulldeps --stage=1` with `-Zignore-directory-in-diagnostics-source-blocks`
Fixes#115977
Also makes sure this doesn't happen again by running `ui-fulldeps --stage=1` in CI
Fall back to the unoptimized implementation in read_binary_file if File::metadata lies
Fixes https://github.com/rust-lang/rust/issues/115458
r? `@jackh726` because you approved the previous PR
[`redundant_guards`]: lint if the pattern is on the left side
A tiny improvement to the `redundant_guards` lint. There's no associated issue for this, just noticed it while going through the code.
Right now it warns on `Some(x) if x == 2` and suggests `Some(2)`, but it didn't do that for `Some(x) if 2 == x` (i.e. when the local is on the right side and the pattern on the left side).
changelog: [`redundant_guards`]: also lint if the pattern is on the left side
Rename BoxMeUp to PanicPayload.
"BoxMeUp" is not very clear. Let's rename that to a description of what it actually represents: a panic payload.
This PR also renames the structs that implement this trait to have more descriptive names.
Part of https://github.com/rust-lang/rust/issues/116005
r? `@oli-obk`
style-guide: Document formatting of `as` casts (mostly like a binary operator)
`as` casts currently get formatted like a binary operator, except that
the second line can stack several `as` casts rather than breaking them
each onto their own line. Document this.
As far as I can tell (cc `@calebcartwright` for verification), this is not a 2024 edition change, it just documents current behavior.
Simplify/Optimize FileEncoder
FileEncoder is basically a BufWriter except that it exposes access to the not-written-to-yet region of the buffer so that some users can write directly to the buffer. This strategy is awesome because it lets us avoid calling memcpy for small copies, but the previous strategy was based on the writer accessing a `&mut [MaybeUninit<u8>; N]` and returning a `&[u8]` which is an API which currently mandates the use of unsafe code, making that interface in general not that appealing.
So this PR cleans up the FileEncoder implementation and builds on that general idea of direct buffer access in order to prevent `memcpy` calls in a few key places when encoding the dep graph and rmeta tables. The interface used here is now 100% safe, but with the caveat that internally we need to avoid trusting the number of bytes that the provided function claims to have written.
The original primary objective of this PR was to clean up the FileEncoder implementation so that the fix for the following issues would be easy to implement. The fix for these issues is to correctly update self.buffered even when writes fail, which I think it's easy to verify manually is now done, because all the FileEncoder methods are small.
Fixes https://github.com/rust-lang/rust/issues/115298
Fixes https://github.com/rust-lang/rust/issues/114671
Fixes https://github.com/rust-lang/rust/issues/114045
Fixes https://github.com/rust-lang/rust/issues/108100
Fixes https://github.com/rust-lang/rust/issues/106787