Fixed consistency of Apple simulator target's ABI
Currently there's a few Apple device simulator targets that are inconsistent since some set `target_abi = "sim"` (the correct thing to do) while a bunch of others don't set anything (`""`). Due to this its very hard to reliability check if some Rust code is running inside a simulator. This changes all of them to do the same thing and set `sim` as their `target_abi`.
The new way to identity a simulator during compilation is as simple as `cfg(all(target_vendor="apple", target_abi = "sim"))` or even `cfg(target_abi = "sim")` being less pedantic about it.
The issues with the current form (and inspiration for this) are also summarized in `@thomcc's` [Tweet](https://twitter.com/at_tcsc/status/1576685244702691328).
Add a tier 3 target for the Sony PlayStation 1
This adds a tier 3 target, `mipsel-sony-psx`, for the Sony PlayStation 1. I've tested it pretty thoroughly with [this SDK](https://github.com/ayrtonm/psx-sdk-rs) I wrote for it.
From the [tier 3 target policy](https://doc.rust-lang.org/rustc/target-tier-policy.html#tier-3-target-policy) (I've omitted the subpoints for brevity, but read over everything)
> A tier 3 target must have a designated developer or developers (the "target maintainers") on record to be CCed when issues arise regarding the target. (The mechanism to track and CC such developers may evolve over time.)
I'd be the designated developer
> Targets must use naming consistent with any existing targets; for instance, a target for the same CPU or OS as an existing Rust target should use the same name for that CPU or OS. Targets should normally use the same names and naming conventions as used elsewhere in the broader ecosystem beyond Rust (such as in other toolchains), unless they have a very good reason to diverge. Changing the name of a target can be highly disruptive, especially once the target reaches a higher tier, so getting the name right is important even for a tier 3 target.
The target name follows the conventions of the existing PSP target (`mipsel-sony-psp`) and uses `psx` following the convention of the broader [PlayStation homebrew community](https://psx-spx.consoledev.net/).
> Tier 3 targets may have unusual requirements to build or use, but must not create legal issues or impose onerous legal terms for the Rust project or for Rust developers or users.
No legal issues with this target.
> Neither this policy nor any decisions made regarding targets shall create any binding agreement or estoppel by any party. If any member of an approving Rust team serves as one of the maintainers of a target, or has any legal or employment requirement (explicit or implicit) that might affect their decisions regarding a target, they must recuse themselves from any approval decisions regarding the target's tier status, though they may otherwise participate in discussions.
👍
> Tier 3 targets should attempt to implement as much of the standard libraries as possible and appropriate (core for most targets, alloc for targets that can support dynamic memory allocation, std for targets with an operating system or equivalent layer of system-provided functionality), but may leave some code unimplemented (either unavailable or stubbed out as appropriate), whether because the target makes it impossible to implement or challenging to implement. The authors of pull requests are not obligated to avoid calling any portions of the standard library on the basis of a tier 3 target not implementing those portions.
The psx supports `core` and `alloc`, but will likely not support `std` anytime soon.
> The target must provide documentation for the Rust community explaining how to build for the target, using cross-compilation if possible. If the target supports running binaries, or running tests (even if they do not pass), the documentation must explain how to run such binaries or tests for the target, using emulation if possible or dedicated hardware if necessary.
This target has an SDK and a `cargo-psx` tool for formatting binaries as psx executables. Documentation and examples are provided in the [psx-sdk-rs README](https://github.com/ayrtonm/psx-sdk-rs#psx-sdk-rs), the SDK and cargo tool are both available through crates.io and docs.rs has [SDK documentation](https://docs.rs/psx/latest/psx/).
> Tier 3 targets must not impose burden on the authors of pull requests, or other developers in the community, to maintain the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on a tier 3 target. Do not send automated messages or notifications (via any medium, including via `@)` to a PR author or others involved with a PR regarding a tier 3 target, unless they have opted into such messages.
👍
> Patches adding or updating tier 3 targets must not break any existing tier 2 or tier 1 target, and must not knowingly break another tier 3 target without approval of either the compiler team or the maintainers of the other tier 3 target.
No problem
This patch makes it possible to use varargs for calling conventions,
which are either based on C (like efiapi) or C is based
on them (for example sysv64 and win64).
Enable inline stack probes on X86 with LLVM 16
The known problems with x86 inline-asm stack probes have been solved on LLVM main (16), so this flips the switch. Anyone using bleeding-edge LLVM with rustc can start testing this, as I have done locally. We'll get more direct rust-ci when LLVM 16 branches and we start our upgrade, and we can always patch or disable it then if we find new problems.
The previous attempt was #77885, reverted in #84708.
LLVM [D131158] changed the SystemZ data layout to always set 64-bit
vector alignment, which used to be conditional on the "vector" feature.
[D131158]: https://reviews.llvm.org/D131158
Rollup of 8 pull requests
Successful merges:
- #100734 (Split out async_fn_in_trait into a separate feature)
- #101664 (Note if mismatched types have a similar name)
- #101815 (Migrated the rustc_passes annotation without effect diagnostic infrastructure)
- #102042 (Distribute rust-docs-json via rustup.)
- #102066 (rustdoc: remove unnecessary `max-width` on headers)
- #102095 (Deduplicate two functions that would soon have been three)
- #102104 (Set 'exec-env:RUST_BACKTRACE=0' in const-eval-select tests)
- #102112 (Allow full relro on powerpc64-unknown-linux-gnu)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Allow full relro on powerpc64-unknown-linux-gnu
This was previously limited to partial relro, citing issues on RHEL6,
but that's no longer a supported platform since #95026. We have long
been enabling full relro in RHEL7's own Rust builds for ppc64, without
trouble, so it should be fine to drop this workaround.
Update rustc's information on Android's sanitizers
This patch updates sanitizer support definitions for Android inside the compiler. It also adjusts the logic to make sure no pre-built sanitizer runtime libraries are emitted as these are instead provided dynamically on Android targets.
This was previously limited to partial relro, citing issues on RHEL6,
but that's no longer a supported platform since #95026. We have long
been enabling full relro in RHEL7's own Rust builds for ppc64, without
trouble, so it should be fine to drop this workaround.
Add armv5te-none-eabi and thumbv5te-none-eabi targets
Creates two new Tier 3 targets, `armv5te-none-eabi` and `thumbv5te-none-eabi`. They are for the same target architecture (armv5te), but one defaults to the A32 instruction set and the other defaults to T32. Based on the existing `armv4t-none-eabi` and `thumbv4t-none-eabi` targets.
My particular use case for these targets is Nintendo DS homebrew, but they should be usable for any armv5te system.
Going through the Tier 3 target policy:
> A tier 3 target must have a designated developer or developers (the "target maintainers") on record to be CCed when issues arise regarding the target. (The mechanism to track and CC such developers may evolve over time.)
That will be me.
> Targets must use naming consistent with any existing targets.
Naming is consistent with previous targets.
>> Target names should not introduce undue confusion or ambiguity unless absolutely necessary to maintain ecosystem compatibility.
No ambiguity here.
> Tier 3 targets may have unusual requirements to build or use, but must not create legal issues or impose onerous legal terms for the Rust project or for Rust developers or users.
Doesn't create any legal issues.
>> The target must not introduce license incompatibilities.
This doesn't introduce any new licenses.
>> Anything added to the Rust repository must be under the standard Rust license (MIT OR Apache-2.0).
Yep.
>> The target must not cause the Rust tools or libraries built for any other host (even when supporting cross-compilation to the target) to depend on any new dependency less permissive than the Rust licensing policy. This applies whether the dependency is a Rust crate that would require adding new license exceptions (as specified by the tidy tool in the rust-lang/rust repository), or whether the dependency is a native library or binary. In other words, the introduction of the target must not cause a user installing or running a version of Rust or the Rust tools to be subject to any new license requirements.
No new license requirements.
>> Compiling, linking, and emitting functional binaries, libraries, or other code for the target (whether hosted on the target itself or cross-compiling from another target) must not depend on proprietary (non-FOSS) libraries.
Everything this uses is FOSS, no proprietary required.
> Neither this policy nor any decisions made regarding targets shall create any binding agreement or estoppel by any party. If any member of an approving Rust team serves as one of the maintainers of a target, or has any legal or employment requirement (explicit or implicit) that might affect their decisions regarding a target, they must recuse themselves from any approval decisions regarding the target's tier status, though they may otherwise participate in discussions.
OK.
>> This requirement does not prevent part or all of this policy from being cited in an explicit contract or work agreement (e.g. to implement or maintain support for a target). This requirement exists to ensure that a developer or team responsible for reviewing and approving a target does not face any legal threats or obligations that would prevent them from freely exercising their judgment in such approval, even if such judgment involves subjective matters or goes beyond the letter of these requirements.
OK.
> Tier 3 targets should attempt to implement as much of the standard libraries as possible and appropriate (core for most targets, alloc for targets that can support dynamic memory allocation, std for targets with an operating system or equivalent layer of system-provided functionality), but may leave some code unimplemented (either unavailable or stubbed out as appropriate), whether because the target makes it impossible to implement or challenging to implement. The authors of pull requests are not obligated to avoid calling any portions of the standard library on the basis of a tier 3 target not implementing those portions.
This is a bare-metal target with only support for `core` (and `alloc`, if the user provides an allocator).
> The target must provide documentation for the Rust community explaining how to build for the target, using cross-compilation if possible. If the target supports running binaries, or running tests (even if they do not pass), the documentation must explain how to run such binaries or tests for the target, using emulation if possible or dedicated hardware if necessary.
Documentation has been added.
> Tier 3 targets must not impose burden on the authors of pull requests, or other developers in the community, to maintain the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on a tier 3 target. Do not send automated messages or notifications (via any medium, including via `@)` to a PR author or others involved with a PR regarding a tier 3 target, unless they have opted into such messages.
OK.
> Backlinks such as those generated by the issue/PR tracker when linking to an issue or PR are not considered a violation of this policy, within reason. However, such messages (even on a separate repository) must not generate notifications to anyone involved with a PR who has not requested such notifications.
OK.
> Patches adding or updating tier 3 targets must not break any existing tier 2 or tier 1 target, and must not knowingly break another tier 3 target without approval of either the compiler team or the maintainers of the other tier 3 target.
This doesn't break any other targets.
>> In particular, this may come up when working on closely related targets, such as variations of the same architecture with different features. Avoid introducing unconditional uses of features that another variation of the target may not have; use conditional compilation or runtime detection, as appropriate, to let each target run code supported by that target.
No unnecessary unconditional features here.
This patch updates sanitizier support definitions for Android inside the
compiler. It also adjusts the logic to make sure no pre-built sanitizer
runtime libraries are emitted as these are instead provided dynamically
on Android targets.
On later stages, the feature is already stable.
Result of running:
rg -l "feature.let_else" compiler/ src/librustdoc/ library/ | xargs sed -s -i "s#\\[feature.let_else#\\[cfg_attr\\(bootstrap, feature\\(let_else\\)#"
Fix a bunch of typo
This PR will fix some typos detected by [typos].
I only picked the ones I was sure were spelling errors to fix, mostly in
the comments.
[typos]: https://github.com/crate-ci/typos
This PR will fix some typos detected by [typos].
I only picked the ones I was sure were spelling errors to fix, mostly in
the comments.
[typos]: https://github.com/crate-ci/typos
Add tier-3 support for powerpc64 and riscv64 openbsd
# powerpc64
- MCP for [powerpc64-unknown-openbsd tier-3 support](https://github.com/rust-lang/compiler-team/issues/551)
- only need to add spec definition in rustc_target
# riscv64
- MCP for [riscv64-unknown-openbsd tier-3 support](https://github.com/rust-lang/compiler-team/issues/552)
- add spec definition in rustc_target
- follow freebsd about avoiding linking with `libatomic`
Set DebuginfoKind::Pdb in msvc_base
This PDB setting was added to `windows_msvc_base` in
https://github.com/rust-lang/rust/pull/98051. It's also needed for the
UEFI targets, and since `uefi_msvc_base` and `windows_msvc_base` are the
only things that inherit from `msvc_base`, just move the PDB setting up
to `mscv_base` to cover both.
Fixes https://github.com/rust-lang/rust/issues/101071