The lexer and json were using `transmute(-1): char` as a sentinel value for EOF, which is invalid since `char` is strictly a unicode codepoint.
Fixing this allows for range asserts on chars since they always lie between 0 and 0x10FFFF.
This also drops support for the managed pointer POISON_ON_FREE feature
as it's not worth adding back the support for it. After a snapshot, the
leftovers can be removed.
This commit removes the -c, --emit-llvm, -s, --rlib, --dylib, --staticlib,
--lib, and --bin flags from rustc, adding the following flags:
* --emit=[asm,ir,bc,obj,link]
* --crate-type=[dylib,rlib,staticlib,bin,lib]
The -o option has also been redefined to be used for *all* flavors of outputs.
This means that we no longer ignore it for libraries. The --out-dir remains the
same as before.
The new logic for files that rustc emits is as follows:
1. Output types are dictated by the --emit flag. The default value is
--emit=link, and this option can be passed multiple times and have all
options stacked on one another.
2. Crate types are dictated by the --crate-type flag and the #[crate_type]
attribute. The flags can be passed many times and stack with the crate
attribute.
3. If the -o flag is specified, and only one output type is specified, the
output will be emitted at this location. If more than one output type is
specified, then the filename of -o is ignored, and all output goes in the
directory that -o specifies. The -o option always ignores the --out-dir
option.
4. If the --out-dir flag is specified, all output goes in this directory.
5. If -o and --out-dir are both not present, all output goes in the current
directory of the process.
6. When multiple output types are specified, the filestem of all output is the
same as the name of the CrateId (derived from a crate attribute or from the
filestem of the crate file).
Closes#7791Closes#11056Closes#11667
This time everything should be okay, No break due to a failed merge or rebase...
Sorry for the abuse of pull request.
So this move extra::sync, extra::arc, extra::future, extra::comm and extra::task_pool to libsync.
This removes @[] from the parser as well as much of the handling of it (and `@str`) from the compiler as I can find.
I've just rebased @pcwalton's (already reviewed) `@str` removal (and fixed the problems in a separate commit); the only new work is the trailing commits with my authorship.
Closes#11967
For the purpose of deciding whether to truncate or extend the right hand side of bit shifts, use the size of the element type for SIMD vector types.
Fix#11900.
`Times::times` was always a second-class loop because it did not support the `break` and `continue` operations. Its playful appeal was then lost after `do` was disabled for closures. It's time to let this one go.
In line with the dissolution of libextra - #8784 - moves arena to its own library libarena.
Changes based on PR #11787. Updates .gitignore to ignore doc/arena.
Set "Dwarf Version" to 2 on OS X to avoid toolchain incompatibility, and
set "Debug Info Version" to prevent debug info from being stripped from
bitcode.
Fixes#11352.
Set "Dwarf Version" to 2 on OS X to avoid toolchain incompatibility, and
set "Debug Info Version" to prevent debug info from being stripped from
bitcode.
Fixes#11352.
cc #7621.
See the commit message. I'm not sure if we should merge this now, or wait until we can write `Clone::clone(x)` which will directly solve the above issue with perfect error messages.
This unfortunately changes an error like
error: mismatched types: expected `&&NotClone` but found `&NotClone`
into
error: type `NotClone` does not implement any method in scope named `clone`
It was decided a long, long time ago that libextra should not exist, but rather its modules should be split out into smaller independent libraries maintained outside of the compiler itself. The theory was to use `rustpkg` to manage dependencies in order to move everything out of the compiler, but maintain an ease of usability.
Sadly, the work on `rustpkg` isn't making progress as quickly as expected, but the need for dissolving libextra is becoming more and more pressing. Because of this, we've thought that a good interim solution would be to simply package more libraries with the rust distribution itself. Instead of dissolving libextra into libraries outside of the mozilla/rust repo, we can dissolve libraries into the mozilla/rust repo for now.
Work on this has been excruciatingly painful in the past because the makefiles are completely opaque to all but a few. Adding a new library involved adding about 100 lines spread out across 8 files (incredibly error prone). The first commit of this pull request targets this pain point. It does not rewrite the build system, but rather refactors large portions of it. Afterwards, adding a new library is as simple as modifying 2 lines (easy, right?). The build system automatically keeps track of dependencies between crates (rust *and* native), promotes binaries between stages, tracks dependencies of installed tools, etc, etc.
With this newfound buildsystem power, I chose the `extra::flate` module as the first candidate for removal from libextra. While a small module, this module is relative complex in that is has a C dependency and the compiler requires it (messing with the dependency graph a bit). Albeit I modified more than 2 lines of makefiles to accomodate libflate (the native dependency required 2 extra lines of modifications), but the removal process was easy to do and straightforward.
---
Testing-wise, I've cross-compiled, run tests, built some docs, installed, uninstalled, etc. I'm still working out a few kinks, and I'm sure that there's gonna be built system issues after this, but it should be working well for basic use!
cc #8784
This is hopefully the beginning of the long-awaited dissolution of libextra.
Using the newly created build infrastructure for building libraries, I decided
to move the first module out of libextra.
While not being a particularly meaty module in and of itself, the flate module
is required by rustc and additionally has a native C dependency. I was able to
very easily split out the C dependency from rustrt, update librustc, and
magically everything gets installed to the right locations and built
automatically.
This is meant to be a proof-of-concept commit to how easy it is to remove
modules from libextra now. I didn't put any effort into modernizing the
interface of libflate or updating it other than to remove the one glob import it
had.
The old method of serializing the AST gives totally bogus spans if the
expansion of an imported macro causes compilation errors. The best
solution seems to be to serialize the actual textual macro definition
and load it the same way the std-macros are. I'm not totally confident
that getting the source from the CodeMap will always do the right thing,
but it seems to work in simple cases.
Renamed the invert() function in iter.rs to flip().
Also renamed the Invert<T> type to Flip<T>.
Some related code comments changed. Documentation that I could find has
been updated, and all the instances I could locate where the
function/type were called have been updated as well.
The old method of serializing the AST gives totally bogus spans if the
expansion of an imported macro causes compilation errors. The best
solution seems to be to serialize the actual textual macro definition
and load it the same way the std-macros are. I'm not totally confident
that getting the source from the CodeMap will always do the right thing,
but it seems to work in simple cases.
NodeIds are sequential integers starting at zero, so we can achieve some
memory savings by just storing the items all in a line in a vector.
The occupancy for typical crates seems to be 75-80%, so we're already
more efficient than a HashMap (maximum occupancy 75%), not even counting
the extra book-keeping that HashMap does.
Major changes:
- Define temporary scopes in a syntax-based way that basically defaults
to the innermost statement or conditional block, except for in
a `let` initializer, where we default to the innermost block. Rules
are documented in the code, but not in the manual (yet).
See new test run-pass/cleanup-value-scopes.rs for examples.
- Refactors Datum to better define cleanup roles.
- Refactor cleanup scopes to not be tied to basic blocks, permitting
us to have a very large number of scopes (one per AST node).
- Introduce nascent documentation in trans/doc.rs covering datums and
cleanup in a more comprehensive way.
Unique pointers and vectors currently contain a reference counting
header when containing a managed pointer.
This `{ ref_count, type_desc, prev, next }` header is not necessary and
not a sensible foundation for tracing. It adds needless complexity to
library code and is responsible for breakage in places where the branch
has been left out.
The `borrow_offset` field can now be removed from `TyDesc` along with
the associated handling in the compiler.
Closes#9510Closes#11533
Unique pointers and vectors currently contain a reference counting
header when containing a managed pointer.
This `{ ref_count, type_desc, prev, next }` header is not necessary and
not a sensible foundation for tracing. It adds needless complexity to
library code and is responsible for breakage in places where the branch
has been left out.
The `borrow_offset` field can now be removed from `TyDesc` along with
the associated handling in the compiler.
Closes#9510Closes#11533
The `print!` and `println!` macros are now the preferred method of printing, and so there is no reason to export the `stdio` functions in the prelude. The functions have also been replaced by their macro counterparts in the tutorial and other documentation so that newcomers don't get confused about what they should be using.
That is, if you have an enum type that is subject to the nullable
pointer optimization, but the null variant has a nonzero number of
fields, and you declare a static whose value is of that variant, then
that used to be an ICE but this change fixes it.
This pull request fixes#11083. The problem was that recursive type definitions were not properly handled for enum types, leading to problems with LLVM's metadata "uniquing". This bug has already been fixed for struct types some time ago (#9658) but I seem to have forgotten about enums back then. I added the offending code from issue #11083 as a test case.
This pull request extracts all scheduling functionality from libstd, moving it into its own separate crates. The new libnative and libgreen will be the new way in which 1:1 and M:N scheduling is implemented. The standard library still requires an interface to the runtime, however, (think of things like `std::comm` and `io::println`). The interface is now defined by the `Runtime` trait inside of `std::rt`.
The booting process is now that libgreen defines the start lang-item and that's it. I want to extend this soon to have libnative also have a "start lang item" but also allow libgreen and libnative to be linked together in the same process. For now though, only libgreen can be used to start a program (unless you define the start lang item yourself). Again though, I want to change this soon, I just figured that this pull request is large enough as-is.
This certainly wasn't a smooth transition, certain functionality has no equivalent in this new separation, and some functionality is now better enabled through this new system. I did my best to separate all of the commits by topic and keep things fairly bite-sized, although are indeed larger than others.
As a note, this is currently rebased on top of my `std::comm` rewrite (or at least an old copy of it), but none of those commits need reviewing (that will all happen in another pull request).
For now, this moves the following modules to std::sync
* UnsafeArc (also removed unwrap method)
* mpsc_queue
* spsc_queue
* atomics
* mpmc_bounded_queue
* deque
We may want to remove some of the queues, but for now this moves things out of
std::rt into std::sync
This uses quite a bit of unsafe code for speed and failure safety, and allocates `2*n` temporary storage.
[Performance](https://gist.github.com/huonw/5547f2478380288a28c2):
| n | new | priority_queue | quick3 |
|-------:|---------:|---------------:|---------:|
| 5 | 200 | 155 | 106 |
| 100 | 6490 | 8750 | 5810 |
| 10000 | 1300000 | 1790000 | 1060000 |
| 100000 | 16700000 | 23600000 | 12700000 |
| sorted | 520000 | 1380000 | 53900000 |
| trend | 1310000 | 1690000 | 1100000 |
(The times are in nanoseconds, having subtracted the set-up time (i.e. the `just_generate` bench target).)
I imagine that there is still significant room for improvement, particularly because both priority_queue and quick3 are doing a static call via `Ord` or `TotalOrd` for the comparisons, while this is using a (boxed) closure.
Also, this code does not `clone`, unlike `quick_sort3`; and is stable, unlike both of the others.
Right now the --crate-id and related flags are all process *after* the entire
crate is parsed. This is less than desirable when used with makefiles because it
means that just to learn the output name of the crate you have to parse the
entire crate (unnecessary).
This commit changes the behavior to lift the handling of these flags much sooner
in the compilation process. This allows us to not have to parse the entire crate
and only have to worry about parsing the crate attributes themselves. The
related methods have all been updated to take an array of attributes rather than
a crate.
Additionally, this ceases duplication of the "what output are we producing"
logic in order to correctly handle things in the case of --test.
Finally, this adds tests for all of this functionality to ensure that it does
not regress.
For `str.as_mut_buf`, un-closure-ification is achieved by outright removal (see commit message). The others are replaced by `.as_ptr`, `.as_mut_ptr` and `.len`
As the title says. The trans changes will lead to an auxiliary alloca being created that allows debug info to track the `self` argument. This alloca is only created in debug builds however. Otherwise very little had to be done after I managed to navigate to some degree the jungle that is self-argument handling `:P`
Closes#10549
This code in resolve accidentally forced all types with an impl to become
public. This fixes it by default inheriting the privacy of what was previously
there and then becoming `true` if nothing else exits.
Closes#10545
When performing LTO, the rust compiler has an opportunity to completely strip
all landing pads in all dependent libraries. I've modified the LTO pass to
recognize the -Z no-landing-pads option when also running an LTO pass to flag
everything in LLVM as nothrow. I've verified that this prevents any and all
invoke instructions from being emitted.
I believe that this is one of our best options for moving forward with
accomodating use-cases where unwinding doesn't really make sense. This will
allow libraries to be built with landing pads by default but allow usage of them
in contexts where landing pads aren't necessary.
When performing LTO, the rust compiler has an opportunity to completely strip
all landing pads in all dependent libraries. I've modified the LTO pass to
recognize the -Z no-landing-pads option when also running an LTO pass to flag
everything in LLVM as nothrow. I've verified that this prevents any and all
invoke instructions from being emitted.
I believe that this is one of our best options for moving forward with
accomodating use-cases where unwinding doesn't really make sense. This will
allow libraries to be built with landing pads by default but allow usage of them
in contexts where landing pads aren't necessary.
cc #10780
This replaces the link meta attributes with a pkgid attribute and uses a hash
of this as the crate hash. This makes the crate hash computable by things
other than the Rust compiler. It also switches the hash function ot SHA1 since
that is much more likely to be available in shell, Python, etc than SipHash.
Fixes#10188, #8523.
This commit implements LTO for rust leveraging LLVM's passes. What this means
is:
* When compiling an rlib, in addition to insdering foo.o into the archive, also
insert foo.bc (the LLVM bytecode) of the optimized module.
* When the compiler detects the -Z lto option, it will attempt to perform LTO on
a staticlib or binary output. The compiler will emit an error if a dylib or
rlib output is being generated.
* The actual act of performing LTO is as follows:
1. Force all upstream libraries to have an rlib version available.
2. Load the bytecode of each upstream library from the rlib.
3. Link all this bytecode into the current LLVM module (just using llvm
apis)
4. Run an internalization pass which internalizes all symbols except those
found reachable for the local crate of compilation.
5. Run the LLVM LTO pass manager over this entire module
6a. If assembling an archive, then add all upstream rlibs into the output
archive. This ignores all of the object/bitcode/metadata files rust
generated and placed inside the rlibs.
6b. If linking a binary, create copies of all upstream rlibs, remove the
rust-generated object-file, and then link everything as usual.
As I have explained in #10741, this process is excruciatingly slow, so this is
*not* turned on by default, and it is also why I have decided to hide it behind
a -Z flag for now. The good news is that the binary sizes are about as small as
they can be as a result of LTO, so it's definitely working.
Closes#10741Closes#10740
Right now whenever an rlib file is linked against, all of the metadata from the
rlib is pulled in to the final staticlib or binary. The reason for this is that
the metadata is currently stored in a section of the object file. Note that this
is intentional for dynamic libraries in order to distribute metadata bundled
with static libraries.
This commit alters the situation for rlib libraries to instead store the
metadata in a separate file in the archive. In doing so, when the archive is
passed to the linker, none of the metadata will get pulled into the result
executable. Furthermore, the metadata file is skipped when assembling rlibs into
an archive.
The snag in this implementation comes with multiple output formats. When
generating a dylib, the metadata needs to be in the object file, but when
generating an rlib this needs to be separate. In order to accomplish this, the
metadata variable is inserted into an entirely separate LLVM Module which is
then codegen'd into a different location (foo.metadata.o). This is then linked
into dynamic libraries and silently ignored for rlib files.
While changing how metadata is inserted into archives, I have also stopped
compressing metadata when inserted into rlib files. We have wanted to stop
compressing metadata, but the sections it creates in object file sections are
apparently too large. Thankfully if it's just an arbitrary file it doesn't
matter how large it is.
I have seen massive reductions in executable sizes, as well as staticlib output
sizes (to confirm that this is all working).
The main one removed is rust_upcall_reset_stack_limit (continuation of #10156),
and this also removes the upcall_trace function. The was hidden behind a
`-Z trace` flag, but if you attempt to use this now you'll get a linker error
because there is no implementation of the 'upcall_trace' function. Due to this
no longer working, I decided to remove it entirely from the compiler (I'm also a
little unsure on what it did in the first place).
* Don't flag any address_insignificant statics as reachable because the whole
point of the address_insignificant optimization is that the static is not
reachable. Additionally, there's no need for it to be reachable because LLVM
optimizes it away.
* Be sure to not leak external node ids into our reachable set, this can
spuriously cause local items to be considered reachable if the node ids just
happen to line up
**Note**: I only tested on top of my #10670 PR, size reductions come from both change sets.
With this, [more enums are shrinked](https://gist.github.com/eddyb/08fef0dfc6ff54e890bc), the most significant one being `ast_node`, from 104 bytes (master) to 96 (#10670) and now to 32 bytes.
My own testcase requires **200MB** less when compiling (not including the other **200MB** gained in #10670), and rustc-stage2 is down by about **130MB**.
I believe there is more to gain by fiddling with the enums' layouts.
In this series of commits, I've implemented static linking for rust. The scheme I implemented was the same as my [mailing list post](https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html).
The commits have more details to the nitty gritty of what went on. I've rebased this on top of my native mutex pull request (#10479), but I imagine that it will land before this lands, I just wanted to pre-emptively get all the rebase conflicts out of the way (becuase this is reorganizing building librustrt as well).
Some contentious points I want to make sure are all good:
* I've added more "compiler chooses a default" behavior than I would like, I want to make sure that this is all very clearly outlined in the code, and if not I would like to remove behavior or make it clearer.
* I want to make sure that the new "fancy suite" tests are ok (using make/python instead of another rust crate)
If we do indeed pursue this, I would be more than willing to write up a document describing how linking in rust works. I believe that this behavior should be very understandable, and the compiler should never hinder someone just because linking is a little fuzzy.
In #10422, I didn't actually test to make sure that the '-Z gen-crate-map'
option was usable before I implemented it. The crate map was indeed generated
when '-Z gen-crate-map' was specified, but the I/O factory slot was empty
because of an extra check in trans about filling in that location.
This commit both fixes that location, and checks in a "fancy test" which does
lots of fun stuff. The test will use the rustc library to compile a rust crate,
and then compile a C program to link against that crate and run the C program.
To my knowledge this is the first test of its kind, so it's a little ad-hoc, but
it seems to get the job done. We could perhaps generalize running tests like
this, but for now I think it's fine to have this sort of functionality tucked
away in a test.
This commit implements the support necessary for generating both intermediate
and result static rust libraries. This is an implementation of my thoughts in
https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html.
When compiling a library, we still retain the "lib" option, although now there
are "rlib", "staticlib", and "dylib" as options for crate_type (and these are
stackable). The idea of "lib" is to generate the "compiler default" instead of
having too choose (although all are interchangeable). For now I have left the
"complier default" to be a dynamic library for size reasons.
Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an
rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a
dynamic object. I chose this for size reasons, but also because you're probably
not going to be embedding the rustc compiler anywhere any time soon.
Other than the options outlined above, there are a few defaults/preferences that
are now opinionated in the compiler:
* If both a .dylib and .rlib are found for a rust library, the compiler will
prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option
* If generating a "lib", the compiler will generate a dynamic library. This is
overridable by explicitly saying what flavor you'd like (rlib, staticlib,
dylib).
* If no options are passed to the command line, and no crate_type is found in
the destination crate, then an executable is generated
With this change, you can successfully build a rust program with 0 dynamic
dependencies on rust libraries. There is still a dynamic dependency on
librustrt, but I plan on removing that in a subsequent commit.
This change includes no tests just yet. Our current testing
infrastructure/harnesses aren't very amenable to doing flavorful things with
linking, so I'm planning on adding a new mode of testing which I believe belongs
as a separate commit.
Closes#552
This is needed so that the FFI works as expected on platforms that don't
flatten aggregates the way the AMD64 ABI does, especially for `#[repr(C)]`.
This moves more of `type_of` into `trans::adt`, because the type might
or might not be an LLVM struct.
This was needed to access UEFI boot services in my new Boot2Rust experiment.
I also realized that Rust functions declared as extern always use the C calling convention regardless of how they were declared, so this pull request fixes that as well.
This replaces `*` with `..` in enums, `_` with `..` in structs, and `.._` with `..` in vectors. It adds obsolete syntax warnings for the old forms but doesn't turn them on yet because we need a snapshot.
#5830
This PR improves the single-stepping experience for if-expression (no more jumping into the *else* branch before entering the *then* branch, no more jumping to the end of the *else* branch after finishing the *then* branch). Unfortunately I don't know of a straight-forward way of writing automated tests for this. Suggestions welcome!
If a function is marked as external, then it's likely desired for use with some
native library, so we're not really accomplishing a whole lot by internalizing
all of these symbols.
As we start to move runtime components into the crate map, it's becoming harder
and harder to start the runtime from a C function as rust is embedded in another
application. Right now if you compile a rust crate as a dynamic library which is
then linked to another application, when using std::rt::start there are no I/O
local services, even though rustuv was linked against and requested. The reason
for this is that there is no top level crate map available specifying where to
find libuv I/O.
This option is not meant to be used regularly, but rather whenever compiling a
final library crate and linking it into another application. This lifts the
requirement that to get a crate map you must have the final destination be an
executable.
These two attributes are no longer useful now that Rust has decided to leave
segmented stacks behind. It is assumed that the rust task's stack is always
large enough to make an FFI call (due to the stack being very large).
There's always the case of stack overflow, however, to consider. This does not
change the behavior of stack overflow in Rust. This is still normally triggered
by the __morestack function and aborts the whole process.
C stack overflow will continue to corrupt the stack, however (as it did before
this commit as well). The future improvement of a guard page at the end of every
rust stack is still unimplemented and is intended to be the mechanism through
which we attempt to detect C stack overflow.
Closes#8822Closes#10155
As we start to move runtime components into the crate map, it's becoming harder
and harder to start the runtime from a C function as rust is embedded in another
application. Right now if you compile a rust crate as a dynamic library which is
then linked to another application, when using std::rt::start there are no I/O
local services, even though rustuv was linked against and requested. The reason
for this is that there is no top level crate map available specifying where to
find libuv I/O.
This option is not meant to be used regularly, but rather whenever compiling a
final library crate and linking it into another application. This lifts the
requirement that to get a crate map you must have the final destination be an
executable.
This adds an other ABI option which allows a custom selection over the target
architecture and OS. The only current candidate for this change is that kernel32
on win32 uses stdcall, but on win64 it uses the cdecl calling convention.
Otherwise everywhere else this is defined as using the Cdecl calling convention.
cc #10049Closes#8774
This adds an other ABI option which allows a custom selection over the target
architecture and OS. The only current candidate for this change is that kernel32
on win32 uses stdcall, but on win64 it uses the cdecl calling convention.
Otherwise everywhere else this is defined as using the Cdecl calling convention.
cc #10049Closes#8774
This isn't quite as fancy as the struct in #9913, but I'm not sure we should be exposing crate names/hashes of the types. That being said, it'd be pretty easy to extend this (the deterministic hashing regardless of what crate you're in was the hard part).
This commit changes drop glue generated for structs to use the invoke LLVM
instruction instead of call. What this means is that if the user destructor
triggers an unwinding, then the fields of the struct will still ge dropped.
This is not an attempt to support failing while failing, as that's mostly a
problem of runtime support. This is more of an issue of soundness in making sure
that destructors are appropriately run. The test included fails before this
commit, and only has one call to fail!(), yet it doesn't destroy its struct
fields.
Previously, all functions called by a reachable function were considered
reachable, but this is only the case if the original function was possibly
inlineable (if it's type generic or #[inline]-flagged).
This commit changes drop glue generated for structs to use the invoke LLVM
instruction instead of call. What this means is that if the user destructor
triggers an unwinding, then the fields of the struct will still ge dropped.
This is not an attempt to support failing while failing, as that's mostly a
problem of runtime support. This is more of an issue of soundness in making sure
that destructors are appropriately run. The test included fails before this
commit, and only has one call to fail!(), yet it doesn't destroy its struct
fields.
Previously, all functions called by a reachable function were considered
reachable, but this is only the case if the original function was possibly
inlineable (if it's type generic or #[inline]-flagged).
Allows an enum with a discriminant to use any of the primitive integer types to store it. By default the smallest usable type is chosen, but this can be overridden with an attribute: `#[repr(int)]` etc., or `#[repr(C)]` to match the target's C ABI for the equivalent C enum.
Also adds a lint pass for using non-FFI safe enums in extern declarations, checks that specified discriminants can be stored in the specified type if any, and fixes assorted code that was assuming int.
This is one of the final steps needed to complete #9128. It still needs a little bit of polish before closing that issue, but it's in a pretty much "done" state now.
The idea here is that the entire event loop implementation using libuv is now housed in `librustuv` as a completely separate library. This library is then injected (via `extern mod rustv`) into executable builds (similarly to how libstd is injected, tunable via `#[no_uv]`) to bring in the "rust blessed event loop implementation."
Codegen-wise, there is a new `event_loop_factory` language item which is tagged on a function with 0 arguments returning `~EventLoop`. This function's symbol is then inserted into the crate map for an executable crate, and if there is no definition of the `event_loop_factory` language item then the value is null.
What this means is that embedding rust as a library in another language just got a little harder. Libraries don't have crate maps, which means that there's no way to find the event loop implementation to spin up the runtime. That being said, it's always possible to build the runtime manually. This request also makes more runtime components public which should probably be public anyway. This new public-ness should allow custom scheduler setups everywhere regardless of whether you follow the `rt::start `path.
The previous implementation, when combined with small discriminants and
immediate types, caused problems for types like `Either<u8, i16>` which
are now small enough to be immediate and can have fields intersecting
the highest-alignment variant's alignment padding (which LLVM doesn't
preserve). So let's not do that.
Not only can discriminants be smaller than int now, but they can be
larger than int on 32-bit targets. This has obvious implications for the
reflection interface. Without this change, things fail with LLVM
assertions when we try to "extend" i64 to i32.
Note that raising an error during trans doesn't stop the compile or cause
rustc to exit with a failure status, currently, so this is of more than
cosmetic importance.
Allows an enum with a discriminant to use any of the primitive integer
types to store it. By default the smallest usable type is chosen, but
this can be overridden with an attribute: `#[repr(int)]` etc., or
`#[repr(C)]` to match the target's C ABI for the equivalent C enum.
This commit breaks a few things, due to transmutes that now no longer
match in size, or u8 enums being passed to C that expects int, or
reflection; later commits on this branch fix them.
There are a few reasons that this is a desirable move to take:
1. Proof of concept that a third party event loop is possible
2. Clear separation of responsibility between rt::io and the uv-backend
3. Enforce in the future that the event loop is "pluggable" and replacable
Here's a quick summary of the points of this pull request which make this
possible:
* Two new lang items were introduced: event_loop, and event_loop_factory.
The idea of a "factory" is to define a function which can be called with no
arguments and will return the new event loop as a trait object. This factory
is emitted to the crate map when building an executable. The factory doesn't
have to exist, and when it doesn't then an empty slot is in the crate map and
a basic event loop with no I/O support is provided to the runtime.
* When building an executable, then the rustuv crate will be linked by default
(providing a default implementation of the event loop) via a similar method to
injecting a dependency on libstd. This is currently the only location where
the rustuv crate is ever linked.
* There is a new #[no_uv] attribute (implied by #[no_std]) which denies
implicitly linking to rustuv by default
Closes#5019
This is, I think, the minimal change required. I would have included a test but as far as I can tell there is currently no way to precisely test that the span for an error underlines the correct word. I did verify it manually.
LLVM is unable to determine this for most cases.
http://llvm-reviews.chandlerc.com/D2034 needs to land upstream before
this is going to have an effect. It's harmless to start generating the
expect hint now.
LLVM is unable to determine this for most cases.
http://llvm-reviews.chandlerc.com/D2034 needs to land upstream before
this is going to have an effect. It's harmless to start generating the
expect hint now.
This commit re-introduces the functionality of __morestack in a way that it was
not originally anticipated. Rust does not currently have segmented stacks,
rather just large stack segments. We do not detect when these stack segments are
overrun currently, but this commit leverages __morestack in order to check this.
This commit purges a lot of the old __morestack and stack limit C++
functionality, migrating the necessary chunks to rust. The stack limit is now
entirely maintained in rust, and the "main logic bits" of __morestack are now
also implemented in rust as well.
I put my best effort into validating that this currently builds and runs successfully on osx and linux 32/64 bit, but I was unable to get this working on windows. We never did have unwinding through __morestack frames, and although I tried poking at it for a bit, I was unable to understand why we don't get unwinding right now.
A focus of this commit is to implement as much of the logic in rust as possible. This involved some liberal usage of `no_split_stack` in various locations, along with some use of the `asm!` macro (scary). I modified a bit of C++ to stop calling `record_sp_limit` because this is no longer defined in C++, rather in rust.
Another consequence of this commit is that `thread_local_storage::{get, set}` must both be flagged with `#[rust_stack]`. I've briefly looked at the implementations on osx/linux/windows to ensure that they're pretty small stacks, and I'm pretty sure that they're definitely less than 20K stacks, so we probably don't have a lot to worry about.
Other things worthy of note:
* The default stack size is now 4MB instead of 2MB. This is so that when we request 2MB to call a C function you don't immediately overflow because you have consumed any stack at all.
* `asm!` is actually pretty cool, maybe we could actually define context switching with it?
* I wanted to add links to the internet about all this jazz of storing information in TLS, but I was only able to find a link for the windows implementation. Otherwise my suggestion is just "disassemble on that arch and see what happens"
* I put my best effort forward on arm/mips to tweak __morestack correctly, we have no ability to test this so an extra set of eyes would be useful on these spots.
* This is all really tricky stuff, so I tried to put as many comments as I thought were necessary, but if anything is still unclear (or I completely forgot to take something into account), I'm willing to write more!
This commit resumes management of the stack boundaries and limits when switching
between tasks. This additionally leverages the __morestack function to run code
on "stack overflow". The current behavior is to abort the process, but this is
probably not the best behavior in the long term (for deails, see the comment I
wrote up in the stack exhaustion routine).
Previously an ExprLit was created *per byte* causing a huge increase in memory
bloat. This adds a new `lit_binary` to contain a literal of binary data, which
is currently only used by the include_bin! syntax extension. This massively
speeds up compilation times of the shootout-k-nucleotide-pipes test
before:
time: 469s
memory: 6GB
assertion failure in LLVM (section too large)
after:
time: 2.50s
memory: 124MB
Closes#2598
Previously an ExprLit was created *per byte* causing a huge increase in memory
bloat. This adds a new `lit_binary` to contain a literal of binary data, which
is currently only used by the include_bin! syntax extension. This massively
speeds up compilation times of the shootout-k-nucleotide-pipes test
before:
time: 469s
memory: 6GB
assertion failure in LLVM (section too large)
after:
time: 2.50s
memory: 124MB
Closes#2598
The code generation previously assumed a reference could not alter the
value in a way the destructor would notice. This is an incorrect
assumption for `&mut`, and is also incorrect for an `&` pointer to a
non-`Freeze` type.
Closes#7972
The goal here is to avoid requiring a division or multiplication to compare against the length. The bounds check previously used an incorrect micro-optimization to replace the division by a multiplication, but now neither is necessary *for slices*. Unique/managed vectors will have to do a division to get the length until they are reworked/replaced.
Remove the old path.
Rename path2 to path.
Update all clients for the new path.
Also make some miscellaneous changes to the Path APIs to help the
adoption process.
I borrow some ideas from clang's ABIInfo.h and TargetInfo.cpp.
LLVMType is replaced with ArgType, which is similar to clang's ABIArgInfo,
and I also merge attrs of FnType into it.
Now ABI implementation doesn't need to insert hidden return pointer
to arg_tys of FnType. Instead it is handled in foreign.rs.
This change also fixes LLVM assertion failure when compiling MIPS target.
This fixes a bug in which the visibility rules were approximated by
reachability, but forgot to cover the case where a 'pub use' reexports a private
item. This fixes the commit by instead using the results of the privacy pass of
the compiler to create the initial working set of the reachability pass.
This may have the side effect of increasing the size of metadata, but it's
difficult to avoid for correctness purposes sadly.
Closes#9790