[breaking-change]
syntax::errors::Handler::new has been renamed to with_tty_emitter
Many functions which used to take a syntax::errors::ColorConfig, now take a rustc::session::config::ErrorOutputType. If you previously used ColorConfig::Auto as a default, you should now use ErrorOutputType::default().
Given this code:
fn main() {
let _ = 'abcd';
}
The compiler would give a message like:
error: character literal may only contain one codepoint: ';
let _ = 'abcd';
^~
With this change, the message now displays:
error: character literal may only contain one codepoint: 'abcd'
let _ = 'abcd'
^~~~~~
Fixes#30033
This PR fixes an ICE due to an DiagnosticsBuilder not being canceld or emitted.
Ideally it would use `Handler::cancel`, but I did not manage to get a `&mut` reference to the diagnostics handler.
See RFC amendment 1384 and tracking issue 30450:
https://github.com/rust-lang/rfcs/pull/1384https://github.com/rust-lang/rust/issues/30450
Moved old check_matcher code into check_matcher_old
combined the two checks to enable a warning cycle (where we will
continue to error if the two checks agree to reject, accept if the new
check says accept, and warn if the old check accepts but the new check
rejects).
The motivation (other than removing boilerplate) is that this is a baby step towards a parser with error recovery.
[breaking-change] if you use any of the changed functions, you'll need to remove a try! or panictry!
This is roughly the same as my previous PR that created a dependency graph, but that:
1. The dependency graph is only optionally constructed, though this doesn't seem to make much of a difference in terms of overhead (see measurements below).
2. The dependency graph is simpler (I combined a lot of nodes).
3. The dependency graph debugging facilities are much better: you can now use `RUST_DEP_GRAPH_FILTER` to filter the dep graph to just the nodes you are interested in, which is super help.
4. The tests are somewhat more elaborate, including a few known bugs I need to fix in a second pass.
This is potentially a `[breaking-change]` for plugin authors. If you are poking about in tcx state or something like that, you probably want to add `let _ignore = tcx.dep_graph.in_ignore();`, which will cause your reads/writes to be ignored and not affect the dep-graph.
After this, or perhaps as an add-on to this PR in some cases, what I would like to do is the following:
- [x] Write-up a little guide to how to use this system, the debugging options available, and what the possible failure modes are.
- [ ] Introduce read-only and perhaps the `Meta` node
- [x] Replace "memoization tasks" with node from the map itself
- [ ] Fix the shortcomings, obviously! Notably, the HIR map needs to register reads, and there is some state that is not yet tracked. (Maybe as a separate PR.)
- [x] Refactor the dep-graph code so that the actual maintenance of the dep-graph occurs in a parallel thread, and the main thread simply throws things into a shared channel (probably a fixed-size channel). There is no reason for dep-graph construction to be on the main thread. (Maybe as a separate PR.)
Regarding performance: adding this tracking does add some overhead, approximately 2% in my measurements (I was comparing the build times for rustdoc). Interestingly, enabling or disabling tracking doesn't seem to do very much. I want to poke at this some more and gather a bit more data -- in some tests I've seen that 2% go away, but on others it comes back. It's not entirely clear to me if that 2% is truly due to constructing the dep-graph at all.
The next big step after this is write some code to dump the dep-graph to disk and reload it.
r? @michaelwoerister
This PR changes the `emit_opaque` and `read_opaque` methods in the RBML library to use a space-efficient binary encoder that does not emit any tags and uses the LEB128 variable-length integer format for all numbers it emits.
The space savings are nice, albeit a bit underwhelming, especially for dynamic libraries where metadata is already compressed.
| RLIBs | NEW | OLD |
|--------------|--------|-----------|
|libstd | 8.8 MB | 10.5 MB |
|libcore |15.6 MB | 19.7 MB |
|libcollections| 3.7 MB | 4.8 MB |
|librustc |34.0 MB | 37.8 MB |
|libsyntax |28.3 MB | 32.1 MB |
| SOs | NEW | OLD |
|---------------|-----------|--------|
| libstd | 4.8 MB | 5.1 MB |
| librustc | 8.6 MB | 9.2 MB |
| libsyntax | 7.8 MB | 8.4 MB |
At least this should make up for the size increase caused recently by also storing MIR in crate metadata.
Can this be a breaking change for anyone?
cc @rust-lang/compiler
The current help message is too much about "normal" macros to be used
as general message. Keep it for normal macros, and add custom help and
error messages for macro definitions.
The current help message is too much about "normal" macros to be used
as general message. Keep it for normal macros, and add custom help and
error messages for macro definitions.
Currently a compiler can be built with the `--disable-elf-tls` option for compatibility with OSX 10.6 which doesn't have ELF TLS. This is unfortunate, however, as a whole new compiler must be generated which can take some time. These commits add a new (feature gated) `cfg(target_thread_local)` annotation set by the compiler which indicates whether `#[thread_local]` is available for use. The compiler now interprets `MACOSX_DEPLOYMENT_TARGET` (a standard environment variable) to set this flag on OSX. With this we may want to start compiling our OSX nightlies with `MACOSX_DEPLOYMENT_TARGET` set to 10.6 which would allow the compiler out-of-the-box to generate 10.6-compatible binaries.
For now the compiler still by default targets OSX 10.7 by allowing ELF TLS by default (e.g. if `MACOSX_DEPLOYMENT_TARGET` isn't set).
This transitions the standard library's `thread_local!` macro to use the
freshly-added and gated `#[cfg(target_thread_local)]` attribute. This greatly
simplifies the `#[cfg]` logic in play here, but requires that the standard
library expose both the OS and ELF TLS implementation modules as unstable
implementation details.
The implementation details were shuffled around a bit but end up generally
compiling to the same thing.
Closes#26581 (this supersedes the need for the option)
Closes#27057 (this also starts ignoring the option)
This change modifies the feature gating of special `#[cfg]` attributes to not
require a `#![feature]` directive in the crate-of-use if the source of the macro
was declared with `#[allow_internal_unstable]`. This enables the standard
library's macro for `thread_local!` to make use of the
`#[cfg(target_thread_local)]` attribute despite it being feature gated (e.g.
it's a hidden implementation detail).
Currently the standard library has some pretty complicated logic to detect
whether #[thread_local] should be used or whether it's supported. This is also
unfortunately not quite true for OSX where not all versions support
the #[thread_local] attribute (only 10.7+ does). Compiling code for OSX 10.6 is
typically requested via the MACOSX_DEPLOYMENT_TARGET environment variable (e.g.
the linker recognizes this), but the standard library unfortunately does not
respect this.
This commit updates the compiler to add a `target_thread_local` cfg annotation
if the platform being targeted supports the `#[thread_local]` attribute. This is
feature gated for now, and it is only true on non-aarch64 Linux and 10.7+ OSX
(e.g. what the module already does today). Logic has also been added to parse
the deployment target environment variable.
This PR is a rebase of the original PR by @eddyb https://github.com/rust-lang/rust/pull/21836 with some unrebasable parts manually reapplied, feature gate added + type equality restriction added as described below.
This implementation is partial because the type equality restriction is applied to all type ascription expressions and not only those in lvalue contexts. Thus, all difficulties with detection of these contexts and translation of coercions having effect in runtime are avoided.
So, you can't write things with coercions like `let slice = &[1, 2, 3]: &[u8];`. It obviously makes type ascription less useful than it should be, but it's still much more useful than not having type ascription at all.
In particular, things like `let v = something.iter().collect(): Vec<_>;` and `let u = t.into(): U;` work as expected and I'm pretty happy with these improvements alone.
Part of https://github.com/rust-lang/rust/issues/23416
This reduces iteration time (`make rustc-stage1`) for moved syntax extensions from 11 minutes to 3 minutes on my machine.
Because of the signature change, this is a [breaking-change] for people directly calling `expand_crate`. I think it is rare: from GitHub search, only case I found is [glassful](https://github.com/kmcallister/glassful).
Closes https://github.com/rust-lang/rust/issues/29935
The attributes `deprecated` and `rustc_deprecated` are completely independent in this implementation and it leads to some noticeable code duplication. Representing `deprecated` as
```
Stability {
level: Stable { since: "" },
feature: "",
depr: Some(Deprecation),
}
```
or, contrariwise, splitting rustc_deprecation from stability makes most of the duplication go away.
I can do this refactoring, but before doing it I must be sure, that further divergence of `deprecated` and `rustc_deprecated` is certainly not a goal.
cc @llogiq
This PR reverts #29543 and instead implements proper support for "=*m" and "+*m" indirect output operands. This provides a framework on top of which support for plain memory operands ("m", "=m" and "+m") can be implemented.
This also fixes the liveness analysis pass not handling read/write operands correctly.
This commit is the standard API stabilization commit for the 1.6 release cycle.
The list of issues and APIs below have all been through their cycle-long FCP and
the libs team decisions are listed below
Stabilized APIs
* `Read::read_exact`
* `ErrorKind::UnexpectedEof` (renamed from `UnexpectedEOF`)
* libcore -- this was a bit of a nuanced stabilization, the crate itself is now
marked as `#[stable]` and the methods appearing via traits for primitives like
`char` and `str` are now also marked as stable. Note that the extension traits
themeselves are marked as unstable as they're imported via the prelude. The
`try!` macro was also moved from the standard library into libcore to have the
same interface. Otherwise the functions all have copied stability from the
standard library now.
* The `#![no_std]` attribute
* `fs::DirBuilder`
* `fs::DirBuilder::new`
* `fs::DirBuilder::recursive`
* `fs::DirBuilder::create`
* `os::unix::fs::DirBuilderExt`
* `os::unix::fs::DirBuilderExt::mode`
* `vec::Drain`
* `vec::Vec::drain`
* `string::Drain`
* `string::String::drain`
* `vec_deque::Drain`
* `vec_deque::VecDeque::drain`
* `collections::hash_map::Drain`
* `collections::hash_map::HashMap::drain`
* `collections::hash_set::Drain`
* `collections::hash_set::HashSet::drain`
* `collections::binary_heap::Drain`
* `collections::binary_heap::BinaryHeap::drain`
* `Vec::extend_from_slice` (renamed from `push_all`)
* `Mutex::get_mut`
* `Mutex::into_inner`
* `RwLock::get_mut`
* `RwLock::into_inner`
* `Iterator::min_by_key` (renamed from `min_by`)
* `Iterator::max_by_key` (renamed from `max_by`)
Deprecated APIs
* `ErrorKind::UnexpectedEOF` (renamed to `UnexpectedEof`)
* `OsString::from_bytes`
* `OsStr::to_cstring`
* `OsStr::to_bytes`
* `fs::walk_dir` and `fs::WalkDir`
* `path::Components::peek`
* `slice::bytes::MutableByteVector`
* `slice::bytes::copy_memory`
* `Vec::push_all` (renamed to `extend_from_slice`)
* `Duration::span`
* `IpAddr`
* `SocketAddr::ip`
* `Read::tee`
* `io::Tee`
* `Write::broadcast`
* `io::Broadcast`
* `Iterator::min_by` (renamed to `min_by_key`)
* `Iterator::max_by` (renamed to `max_by_key`)
* `net::lookup_addr`
New APIs (still unstable)
* `<[T]>::sort_by_key` (added to mirror `min_by_key`)
Closes#27585Closes#27704Closes#27707Closes#27710Closes#27711Closes#27727Closes#27740Closes#27744Closes#27799Closes#27801
cc #27801 (doesn't close as `Chars` is still unstable)
Closes#28968
See https://github.com/rust-lang/rfcs/pull/16 and https://github.com/rust-lang/rust/issues/15701
- Added syntax support for attributes on expressions and all syntax nodes in statement position.
- Extended `#[cfg]` folder to allow removal of statements, and
of expressions in optional positions like expression lists and trailing
block expressions.
- Extended lint checker to recognize lint levels on expressions and
locals.
- As per RFC, attributes are not yet accepted on `if` expressions.
Examples:
```rust
let x = y;
{
...
}
assert_eq!((1, #[cfg(unset)] 2, 3), (1, 3));
let FOO = 0;
```
Implementation wise, there are a few rough corners and open questions:
- The parser work ended up a bit ugly.
- The pretty printer change was based mostly on guessing.
- Similar to the `if` case, there are some places in the grammar where a new `Expr` node starts,
but where it seemed weird to accept attributes and hence the parser doesn't. This includes:
- const expressions in patterns
- in the middle of an postfix operator chain (that is, after `.`, before indexing, before calls)
- on range expressions, since `#[attr] x .. y` parses as `(#[attr] x) .. y`, which is inconsistent with
`#[attr] .. y` which would parse as `#[attr] (.. y)`
- Attributes are added as additional `Option<Box<Vec<Attribute>>>` fields in expressions and locals.
- Memory impact has not been measured yet.
- A cfg-away trailing expression in a block does not currently promote the previous `StmtExpr` in a block to a new trailing expr. That is to say, this won't work:
```rust
let x = {
#[cfg(foo)]
Foo { data: x }
#[cfg(not(foo))]
Foo { data: y }
};
```
- One-element tuples can have their inner expression removed to become Unit, but just Parenthesis can't. Eg, `(#[cfg(unset)] x,) == ()` but `(#[cfg(unset)] x) == error`. This seemed reasonable to me since tuples and unit are type constructors, but could probably be argued either way.
- Attributes on macro nodes are currently unconditionally dropped during macro expansion, which seemed fine since macro disappear at that point?
- Attributes on `ast::ExprParens` will be prepend-ed to the inner expression in the hir folder.
- The work on pretty printer tests for this did trigger, but not fix errors regarding macros:
- expression `foo![]` prints as `foo!()`
- expression `foo!{}` prints as `foo!()`
- statement `foo![];` prints as `foo!();`
- statement `foo!{};` prints as `foo!();`
- statement `foo!{}` triggers a `None` unwrap ICE.
This brings across changes made to the term library to libterm. This
includes removing instances or unwrap, fixing format string handling, and
removing a TODO.
This fix does not bring all changes across, as term now relies on cargo
deps that cannot be brought into the rust build at this stage, but has
attempted as best to cross port changes not relying on this. This notably
limits extra functionality since implemented int he Terminal trait in
Term.
This is in partly in response to rust issue #29992.
This PR allows the constant evaluation of index operations on constant arrays and repeat expressions. This allows index expressions to appear in the expression path of the length expression of a repeat expression or an array type.
An example is
```rust
const ARR: [usize; 5] = [1, 2, 3, 4, 5];
const ARR2: [usize; ARR[1]] = [42, 99];
```
In most other locations llvm's const evaluator figures it out already. This is not specific to index expressions and could be remedied in the future.
Fixes#13677
This does the same sort of suggestion for misspelt macros that we already do for misspelt identifiers.
Example. Compiling this program:
```rust
macro_rules! foo {
($e:expr) => ( $e )
}
fn main() {
fob!("hello!");
}
```
gives the following error message:
```
/Users/mcp/temp/test.rs:7:5: 7:8 error: macro undefined: 'fob!'
/Users/mcp/temp/test.rs:7 fob!("hello!");
^~~
/Users/mcp/temp/test.rs:7:5: 7:8 help: did you mean `foo`?
/Users/mcp/temp/test.rs:7 fob!("hello!");
```
I had to move the levenshtein distance function into libsyntax for this. Maybe this should live somewhere else (some utility crate?), but I couldn't find a crate to put it in that is imported by libsyntax and the other rustc crates.
nodes in statement position.
Extended #[cfg] folder to allow removal of statements, and
of expressions in optional positions like expression lists and trailing
block expressions.
Extended lint checker to recognize lint levels on expressions and
locals.
[breaking change]
I'm not sure if those renames are ok. [TokenType::Tt* to TokenType::*](https://github.com/rust-lang/rust/pull/29582) was obvious, but for all those Item-enums it's less obvious to me what the right way forward is due to the underscore.
This is my first code contribution to Rust, so I'm sure there are some issues with the changes I've made.
I've added the `quote_arg!`, `quote_block!`, `quote_path!`, and `quote_meta_item!` quasiquoting macros. From my experience trying to build AST in compiler plugins, I would like to be able to build any AST piece with a quasiquoting macro (e.g., `quote_struct_field!` or `quote_variant!`) and then use those AST pieces in other quasiquoting macros, but this pull request just adds some of the low-hanging fruit.
I'm not sure if these additions are desirable, and I'm sure these macros can be implemented in an external crate if not.
Did this alphabetically, so I didn't see [how `std` was doing things](https://dxr.mozilla.org/rust/source/src/libstd/lib.rs#215) till I was nearly finished. If you prefer to add crate-level-whitelists like std instead of test-level, I can rebase with that strategy.
A number of these commits can probably be dropped as the crates don't have much to test, and are deprecated. Let me know which if any to drop! (can also squash after review if desired)
r? @steveklabnik
This commit adds issue numbers to the vast majority of active feature
gates. The few that are left without issues are rustc/runtime-internal
features that are essentially private APIs.
Closes#28244
r? @huonw
* Delete `sys::unix::{c, sync}` as these are now all folded into libc itself
* Update all references to use `libc` as a result.
* Update all references to the new flat namespace.
* Moves all windows bindings into sys::c
This commit adds issue numbers to the vast majority of active feature
gates. The few that are left without issues are rustc/runtime-internal
features that are essentially private APIs.
Closes#28244
If you try to put something that's bigger than a char into a char
literal, you get an error:
fn main() {
let c = 'ஶ்ரீ';
}
error: unterminated character constant:
This is a very compiler-centric message. Yes, it's technically
'unterminated', but that's not what you, the user did wrong.
Instead, this commit changes it to
error: character literal that's larger than a char:
As this actually tells you what went wrong.
Fixes#28851
If you try to put something that's bigger than a char into a char
literal, you get an error:
fn main() {
let c = 'ஶ்ரீ';
}
error: unterminated character constant:
This is a very compiler-centric message. Yes, it's technically
'unterminated', but that's not what you, the user did wrong.
Instead, this commit changes it to
error: character literal may only contain one codepoint
As this actually tells you what went wrong.
Fixes#28851
The public set is expanded with trait items, impls and their items, foreign items, exported macros, variant fields, i.e. all the missing parts. Now it's a subset of the exported set.
This is needed for https://github.com/rust-lang/rust/pull/29083 because stability annotation pass uses the public set and all things listed above need to be annotated.
Rustdoc can now be migrated to the public set as well, I guess.
Exported set is now slightly more correct with regard to exported items in blocks - 1) blocks in foreign items are considered and 2) publicity is not inherited from the block's parent - if a function is public it doesn't mean structures defined in its body are public.
r? @alexcrichton or maybe someone else
This helps for the case where a match, such as below:
```rust
let foo = match foo {
Some(x) => x,
None => 0
};
```
gets refactored to no longer need the match, but the match keyword has been left accidentally:
```rust
let foo = match foo.unwrap_or(0);
```
This can be hard to spot as the expression grows more complex.
r? @alexcrichton
This commit generalises parsing of associative operators from left-associative
only (with some ugly hacks to support right-associative assignment) to properly
left/right-associative operators.
Parsing still is not general enough to handle non-associative,
non-highest-precedence prefix or non-highest-precedence postfix operators (e.g.
`..` range syntax), though. That should be fixed in the future.
Lastly, this commit adds support for parsing right-associative `<-` (left arrow)
operator with precedence higher than assignment as the operator for placement-in
feature.
This PR switches the implemented ordering from `unsafe const fn` (as was in the original RFC) to `const unsafe fn` (which is what the lang team decided on)
Previously, if you copied a signature from a trait definition such as:
```rust
fn foo<'a>(&'a Bar) -> bool {}
```
and moved it into an `impl`, there would be an error message:
"unexpected token `'a`"
Adding to the error message that a pattern is expected should help
users to find the actual problem with using a lifetime here.
This commit stabilizes and deprecates library APIs whose FCP has closed in the
last cycle, specifically:
Stabilized APIs:
* `fs::canonicalize`
* `Path::{metadata, symlink_metadata, canonicalize, read_link, read_dir, exists,
is_file, is_dir}` - all moved to inherent methods from the `PathExt` trait.
* `Formatter::fill`
* `Formatter::width`
* `Formatter::precision`
* `Formatter::sign_plus`
* `Formatter::sign_minus`
* `Formatter::alternate`
* `Formatter::sign_aware_zero_pad`
* `string::ParseError`
* `Utf8Error::valid_up_to`
* `Iterator::{cmp, partial_cmp, eq, ne, lt, le, gt, ge}`
* `<[T]>::split_{first,last}{,_mut}`
* `Condvar::wait_timeout` - note that `wait_timeout_ms` is not yet deprecated
but will be once 1.5 is released.
* `str::{R,}MatchIndices`
* `str::{r,}match_indices`
* `char::from_u32_unchecked`
* `VecDeque::insert`
* `VecDeque::shrink_to_fit`
* `VecDeque::as_slices`
* `VecDeque::as_mut_slices`
* `VecDeque::swap_remove_front` - (renamed from `swap_front_remove`)
* `VecDeque::swap_remove_back` - (renamed from `swap_back_remove`)
* `Vec::resize`
* `str::slice_mut_unchecked`
* `FileTypeExt`
* `FileTypeExt::{is_block_device, is_char_device, is_fifo, is_socket}`
* `BinaryHeap::from` - `from_vec` deprecated in favor of this
* `BinaryHeap::into_vec` - plus a `Into` impl
* `BinaryHeap::into_sorted_vec`
Deprecated APIs
* `slice::ref_slice`
* `slice::mut_ref_slice`
* `iter::{range_inclusive, RangeInclusive}`
* `std::dynamic_lib`
Closes#27706Closes#27725
cc #27726 (align not stabilized yet)
Closes#27734Closes#27737Closes#27742Closes#27743Closes#27772Closes#27774Closes#27777Closes#27781
cc #27788 (a few remaining methods though)
Closes#27790Closes#27793Closes#27796Closes#27810
cc #28147 (not all parts stabilized)
Previously, if you copied a signature from a trait definition such as:
```
fn foo<'a>(&'a Bar) -> bool {}
```
and moved it into an `impl`, there would be an error message:
"unexpected token `'a`"
Adding to the error message that a pattern is expected should help
users to find the actual problem with using a lifetime here.
Qualified paths allow full path after the `>::`. For example
```rust
<T as Foo>::U::generic_method::<f64>()
```
The example is taken from `test/run-pass/associated-item-long-paths.rs`.
Qualified paths allow full path after the `>::`. For example
```rust
<T as Foo>::U::generic_method::<f64>()
```
The example is taken from `test/run-pass/associated-item-long-paths.rs`.