macros: improve 1.0/2.0 interaction
This PR supports using unhygienic macros from hygienic macros without breaking the latter's hygiene.
```rust
// crate A:
#[macro_export]
macro_rules! m1 { () => {
f(); // unhygienic: this macro needs `f` in its environment
fn g() {} // (1) unhygienic: `g` is usable outside the macro definition
} }
// crate B:
#![feature(decl_macro)]
extern crate A;
use A::m1;
macro m2() {
fn f() {} // (2)
m1!(); // After this PR, `f()` in the expansion resolves to (2), not (3)
g(); // After this PR, this resolves to `fn g() {}` from the above expansion.
// Today, it is a resolution error.
}
fn test() {
fn f() {} // (3)
m2!(); // Today, `m2!()` can see (3) even though it should be hygienic.
fn g() {} // Today, this conflicts with `fn g() {}` from the expansion, even though it should be hygienic.
}
```
Once this PR lands, you can make an existing unhygienic macro hygienic by wrapping it in a hygienic macro. There is an [example](b766fa887d) of this in the tests.
r? @nrc
Record all imports (`use`, `extern crate`) in the crate metadata
This PR adds non-`pub` `use` and `extern crate` imports in the crate metadata since hygienic macros invoked in other crates may use them. We already include all other non-`pub` items in the crate metadata. This improves import suggestions in some cases.
Fixes#42337.
r? @nrc
We issue just one message for an erroneous glob private variant reëxport
(using the Session's one-time-diagnostics capability), but individual
(non-glob) such erroneous reëxports still get their own messages. The
suggestion to make the enum public is also one-time.
The enum variant reëxport error didn't have an associated error code
(and remedying this here is deemed out of the scope of this commit), so
we resort to the expediency of using 0 as the `DiagnosticMessageId`
value.
Adding Debug to NameResolution was helpful in development.
This resolves#46209.
On the case of duplicated names caused by an `extern crate` statement
with a rename, don't include the inline suggestion, instead using a span
label with only the text to avoid incorrect rust code output.
This'll allow us to reconstruct query parameters purely from the `DepNode`
they're associated with. Some queries could move straight to `HirId` but others
that don't always have a correspondance between `HirId` and `DefId` moved to
two-level maps where the query operates over a `DefIndex`, returning a map,
which is then keyed off `ItemLocalId`.
Closes#44414
The main use of `CrateStore` *before* the `TyCtxt` is created is during
resolution, but we want to be sure that any methods used before resolution are
not used after the `TyCtxt` is created. This commit starts moving the methods
used by resolve to all be named `{name}_untracked` where the rest of the
compiler uses just `{name}` as a query.
During this transition a number of new queries were added to account for
post-resolve usage of these methods.
rustc: Rearchitect lints to be emitted more eagerly
In preparation for incremental compilation this commit refactors the lint
handling infrastructure in the compiler to be more "eager" and overall more
incremental-friendly. Many passes of the compiler can emit lints at various
points but before this commit all lints were buffered in a table to be emitted
at the very end of compilation. This commit changes these lints to be emitted
immediately during compilation using pre-calculated lint level-related data
structures.
Linting today is split into two phases, one set of "early" lints run on the
`syntax::ast` and a "late" set of lints run on the HIR. This commit moves the
"early" lints to running as late as possible in compilation, just before HIR
lowering. This notably means that we're catching resolve-related lints just
before HIR lowering. The early linting remains a pass very similar to how it was
before, maintaining context of the current lint level as it walks the tree.
Post-HIR, however, linting is structured as a method on the `TyCtxt` which
transitively executes a query to calculate lint levels. Each request to lint on
a `TyCtxt` will query the entire crate's 'lint level data structure' and then go
from there about whether the lint should be emitted or not.
The query depends on the entire HIR crate but should be very quick to calculate
(just a quick walk of the HIR) and the red-green system should notice that the
lint level data structure rarely changes, and should hopefully preserve
incrementality.
Overall this resulted in a pretty big change to the test suite now that lints
are emitted much earlier in compilation (on-demand vs only at the end). This in
turn necessitated the addition of many `#![allow(warnings)]` directives
throughout the compile-fail test suite and a number of updates to the UI test
suite.
Closes https://github.com/rust-lang/rust/issues/42511
In preparation for incremental compilation this commit refactors the lint
handling infrastructure in the compiler to be more "eager" and overall more
incremental-friendly. Many passes of the compiler can emit lints at various
points but before this commit all lints were buffered in a table to be emitted
at the very end of compilation. This commit changes these lints to be emitted
immediately during compilation using pre-calculated lint level-related data
structures.
Linting today is split into two phases, one set of "early" lints run on the
`syntax::ast` and a "late" set of lints run on the HIR. This commit moves the
"early" lints to running as late as possible in compilation, just before HIR
lowering. This notably means that we're catching resolve-related lints just
before HIR lowering. The early linting remains a pass very similar to how it was
before, maintaining context of the current lint level as it walks the tree.
Post-HIR, however, linting is structured as a method on the `TyCtxt` which
transitively executes a query to calculate lint levels. Each request to lint on
a `TyCtxt` will query the entire crate's 'lint level data structure' and then go
from there about whether the lint should be emitted or not.
The query depends on the entire HIR crate but should be very quick to calculate
(just a quick walk of the HIR) and the red-green system should notice that the
lint level data structure rarely changes, and should hopefully preserve
incrementality.
Overall this resulted in a pretty big change to the test suite now that lints
are emitted much earlier in compilation (on-demand vs only at the end). This in
turn necessitated the addition of many `#![allow(warnings)]` directives
throughout the compile-fail test suite and a number of updates to the UI test
suite.
Point at the correct path segment on a import statement where a module
doesn't exist.
New output:
```rust
error[E0432]: unresolved import `std::bar`
--> <anon>:1:10
|
1 | use std::bar::{foo1, foo2};
| ^^^ Could not find `bar` in `std`
```
instead of:
```rust
error[E0432]: unresolved import `std::bar::foo1`
--> <anon>:1:16
|
1 | use std::bar::{foo1, foo2};
| ^^^^ Could not find `bar` in `std`
error[E0432]: unresolved import `std::bar::foo2`
--> <anon>:1:22
|
1 | use std::bar::{foo1, foo2};
| ^^^^ Could not find `bar` in `std`
```
Use `DefId`s instead of `NodeId`s for `pub(restricted)` visibilities
This is groundwork for hygiene 2.0, specifically privacy checking hygienic intercrate name resolutions.
r? @nrc