For slightly complex data structures like `rustc_serialize::json::Json`, it is often convenient to have helper methods like `Json::as_string(&self) -> Option<&str>` that return a borrow of some component of `&self`.
However, when `RefCell`s are involved, keeping a `Ref` around is required to hold a borrow to the insides of a `RefCell`. But `Ref` so far only references the entirety of the contents of a `RefCell`, not a component. But there is no reason it couldn’t: `Ref` internally contains just a data reference and a borrow count reference. The two can be dissociated.
This adds a `map_ref` function that creates a new `Ref` for some other data, but borrowing the same `RefCell` as an existing `Ref`.
Example:
```rust
struct RefCellJson(RefCell<Json>);
impl RefCellJson {
fn as_string(&self) -> Option<Ref<str>> {
map_ref(self.borrow(), |j| j.as_string())
}
}
```
r? @alexcrichton
The first commit simply forwards `io::Error`'s `cause` implementation to the inner error.
The second commit adds accessor methods for the inner error. Method names mirror those used elsewhere like `BufReader`.
r? @alexcrichton
The current version of hoedown treats lists interrupting paragraphs in the Markdown.pl style rather than CommonMark, so a newline is needed for the list to be rendered properly.
`core::cell::Cell<T>` and `core::cell::RefCell<T>` currently implement `PartialEq` when `T` does, and just defer to comparing `T` values. There is no reason the same shouldn’t apply to `Eq`.
This enables `#[derive(Eq, PartialEq)]` on e.g. structs that have a `RefCell` field.
r? @alexcrichton
I’m unsure what to do with `#[stable]` attributes on `impl`s. `impl`s generated by `#[derive]` don’t have them.
collections: Make BinaryHeap panic safe in sift_up / sift_down
Use a struct called Hole that keeps track of an invalid location
in the vector and fills the hole on drop.
I include a run-pass test that the current BinaryHeap fails, and the new
one passes.
NOTE: The BinaryHeap will still be inconsistent after a comparison fails. It will
not have the heap property. What we fix is just that elements will be valid
values.
This is actually a performance win -- the new code does not bother to write in `zeroed()`
values in the holes, it just leaves them as they were.
Net result is something like a 5% decrease in runtime for `BinaryHeap::from_vec`. This
can be further improved by using unchecked indexing (I confirmed it makes a difference,
not a surprise with the non-sequential access going on), but let's leave that for another PR.
Safety first 😉Fixes#25842
Use a struct called Hole that keeps track of an invalid location
in the vector and fills the hole on drop.
I include a run-pass test that the current BinaryHeap fails, and the new
one passes.
Fixes#25842