This is a pure refactoring split out from #80689.
It represents the most invasive part of that PR, requiring changes in
every caller of `parse_outer_attributes`
In order to eagerly expand `#[cfg]` attributes while preserving the
original `TokenStream`, we need to know the range of tokens that
corresponds to every attribute target. This is accomplished by making
`parse_outer_attributes` return an opaque `AttrWrapper` struct. An
`AttrWrapper` must be converted to a plain `AttrVec` by passing it to
`collect_tokens_trailing_token`. This makes it difficult to accidentally
construct an AST node with attributes without calling `collect_tokens_trailing_token`,
since AST nodes store an `AttrVec`, not an `AttrWrapper`.
As a result, we now call `collect_tokens_trailing_token` for attribute
targets which only support inert attributes, such as generic arguments
and struct fields. Currently, the constructed `LazyTokenStream` is
simply discarded. Future PRs will record the token range corresponding
to the attribute target, allowing those tokens to be removed from an
enclosing `collect_tokens_trailing_token` call if necessary.
The panic happens when in recovery parsing a full `impl`
(`parse_item_impl`) fails and we drop the `DiagnosticBuilder` for the
recovery suggestion and return the `parse_item_impl` error.
We now raise the original error "expected identifier found `impl`" when
parsing the `impl` fails.
Note that the regression test is slightly simplified version of the
original repro in #81806, to make the error output smaller and more
resilient to unrelated changes in parser error messages.
Fixes#81806
Box the biggest ast::ItemKind variants
This PR is a different approach on https://github.com/rust-lang/rust/pull/81400, aiming to save memory in humongous ASTs.
The three affected item kind enums are:
- `ast::ItemKind` (208 -> 112 bytes)
- `ast::AssocItemKind` (176 -> 72 bytes)
- `ast::ForeignItemKind` (176 -> 72 bytes)
Improve handling of spans around macro result parse errors
Fixes#81543
After we expand a macro, we try to parse the resulting tokens as a AST
node. This commit makes several improvements to how we handle spans when
an error occurs:
* Only ovewrite the original `Span` if it's a dummy span. This preserves
a more-specific span if one is available.
* Use `self.prev_token` instead of `self.token` when emitting an error
message after encountering EOF, since an EOF token always has a dummy
span
* Make `SourceMap::next_point` leave dummy spans unused. A dummy span
does not have a logical 'next point', since it's a zero-length span.
Re-using the span span preserves its 'dummy-ness' for other checks
Fixes#81543
After we expand a macro, we try to parse the resulting tokens as a AST
node. This commit makes several improvements to how we handle spans when
an error occurs:
* Only ovewrite the original `Span` if it's a dummy span. This preserves
a more-specific span if one is available.
* Use `self.prev_token` instead of `self.token` when emitting an error
message after encountering EOF, since an EOF token always has a dummy
span
* Make `SourceMap::next_point` leave dummy spans unused. A dummy span
does not have a logical 'next point', since it's a zero-length span.
Re-using the span span preserves its 'dummy-ness' for other checks
Clone entire `TokenCursor` when collecting tokens
Reverts PR #80830Fixestaiki-e/pin-project#312
We can have an arbitrary number of `None`-delimited group frames pushed
on the stack due to proc-macro invocations, which can legally be exited.
Attempting to account for this would add a lot of complexity for a tiny
performance gain, so let's just use the original strategy.
Reverts PR #80830Fixestaiki-e/pin-project#312
We can have an arbitrary number of `None`-delimited group frames pushed
on the stack due to proc-macro invocations, which can legally be exited.
Attempting to account for this would add a lot of complexity for a tiny
performance gain, so let's just use the original strategy.
Improve diagnostics when parsing angle args
https://github.com/rust-lang/rust/pull/79266 introduced parsing of generic arguments in associated type constraints, this however resulted in possibly very confusing error messages in cases in which closing angle brackets were missing such as in `Vec<(u32, _, _) = vec![]`, which outputs an incorrectly parsed equality constraint error, as noted by `@cynecx.`
This PR tries to provide better error messages in such cases.
r? `@petrochenkov`
Refactor token collection to capture trailing token immediately
Split out from https://github.com/rust-lang/rust/pull/80689 - when we start capturing more information about attribute targets, we'll need to know in advance if we're capturing a trailing token or not.
r? `@ghost`
Fixes#81007
Previously, we would fail to collect tokens in the proper place when
only builtin attributes were present. As a result, we would end up with
attribute tokens in the collected `TokenStream`, leading to duplication
when we attempted to prepend the attributes from the AST node.
We now explicitly track when token collection must be performed due to
nomterminal parsing.
Set tokens on AST node in `collect_tokens`
A new `HasTokens` trait is introduced, which is used to move logic from
the callers of `collect_tokens` into the body of `collect_tokens`.
In addition to reducing duplication, this paves the way for PR #80689,
which needs to perform additional logic during token collection.
A new `HasTokens` trait is introduced, which is used to move logic from
the callers of `collect_tokens` into the body of `collect_tokens`.
In addition to reducing duplication, this paves the way for PR #80689,
which needs to perform additional logic during token collection.
Rework diagnostics for wrong number of generic args (fixes#66228 and #71924)
This PR reworks the `wrong number of {} arguments` message, so that it provides more details and contextual hints.
Suggest async {} for async || {}
Fixes#76011
This adds support for adding help diagnostics to the feature gating checks and
then uses it for the async_closure gate to add the extra bit of help
information as described in the issue.
We will never need to pop past our starting frame during token
capturing. Using an empty stack allows us to avoid pointless heap
allocations/deallocations.
- Adds optional default values to const generic parameters in the AST
and HIR
- Parses these optional default values
- Adds a `const_generics_defaults` feature gate
Implemented a compiler diagnostic for move async mistake
Fixes#79694
First time contributing, so I hope I'm doing everything right.
(If not, please correct me!)
This code performs a check when a move capture clause is parsed. The check is to detect if the user has reversed the async move keywords and to provide a diagnostic with a suggestion to fix it.
Checked code:
```rust
fn main() {
move async { };
}
```
Previous output:
```txt
PS C:\Repos\move_async_test> cargo build
Compiling move_async_test v0.1.0 (C:\Repos\move_async_test)
error: expected one of `|` or `||`, found keyword `async`
--> src\main.rs:2:10
|
2 | move async { };
| ^^^^^ expected one of `|` or `||`
error: aborting due to previous error
error: could not compile `move_async_test`
```
New output:
```txt
PS C:\Repos\move_async_test> cargo +dev build
Compiling move_async_test v0.1.0 (C:\Repos\move_async_test)
error: the order of `move` and `async` is incorrect
--> src\main.rs:2:13
|
2 | let _ = move async { };
| ^^^^^^^^^^
|
help: try switching the order
|
2 | let _ = async move { };
| ^^^^^^^^^^
error: aborting due to previous error
error: could not compile `move_async_test`
```
Is there a file/module where these kind of things are tested?
Would love some feedback 😄