This commit shuffles around some of the `rand` code, along with some
reorganization. The new state of the world is as follows:
* The librand crate now only depends on libcore. This interface is experimental.
* The standard library has a new module, `std::rand`. This interface will
eventually become stable.
Unfortunately, this entailed more of a breaking change than just shuffling some
names around. The following breaking changes were made to the rand library:
* Rng::gen_vec() was removed. This has been replaced with Rng::gen_iter() which
will return an infinite stream of random values. Previous behavior can be
regained with `rng.gen_iter().take(n).collect()`
* Rng::gen_ascii_str() was removed. This has been replaced with
Rng::gen_ascii_chars() which will return an infinite stream of random ascii
characters. Similarly to gen_iter(), previous behavior can be emulated with
`rng.gen_ascii_chars().take(n).collect()`
* {IsaacRng, Isaac64Rng, XorShiftRng}::new() have all been removed. These all
relied on being able to use an OSRng for seeding, but this is no longer
available in librand (where these types are defined). To retain the same
functionality, these types now implement the `Rand` trait so they can be
generated with a random seed from another random number generator. This allows
the stdlib to use an OSRng to create seeded instances of these RNGs.
* Rand implementations for `Box<T>` and `@T` were removed. These seemed to be
pretty rare in the codebase, and it allows for librand to not depend on
liballoc. Additionally, other pointer types like Rc<T> and Arc<T> were not
supported. If this is undesirable, librand can depend on liballoc and regain
these implementations.
* The WeightedChoice structure is no longer built with a `Vec<Weighted<T>>`,
but rather a `&mut [Weighted<T>]`. This means that the WeightedChoice
structure now has a lifetime associated with it.
* The `sample` method on `Rng` has been moved to a top-level function in the
`rand` module due to its dependence on `Vec`.
cc #13851
[breaking-change]
This functionality is not super-core and so doesn't need to be included
in std. It's possible that std may need rand (it does a little bit now,
for io::test) in which case the functionality required could be moved to
a secret hidden module and reexposed by librand.
Unfortunately, using #[deprecated] here is hard: there's too much to
mock to make it feasible, since we have to ensure that programs still
typecheck to reach the linting phase.
* All I/O now returns IoResult<T> = Result<T, IoError>
* All formatting traits now return fmt::Result = IoResult<()>
* The if_ok!() macro was added to libstd
This reverts commit c54427ddfb.
Leave the #[ignores] in that were added to rustpkg tests.
Conflicts:
src/librustc/driver/driver.rs
src/librustc/metadata/creader.rs
The reasons for doing this are:
* The model on which linked failure is based is inherently complex
* The implementation is also very complex, and there are few remaining who
fully understand the implementation
* There are existing race conditions in the core context switching function of
the scheduler, and possibly others.
* It's unclear whether this model of linked failure maps well to a 1:1 threading
model
Linked failure is often a desired aspect of tasks, but we would like to take a
much more conservative approach in re-implementing linked failure if at all.
Closes#8674Closes#8318Closes#8863
These two attributes are no longer useful now that Rust has decided to leave
segmented stacks behind. It is assumed that the rust task's stack is always
large enough to make an FFI call (due to the stack being very large).
There's always the case of stack overflow, however, to consider. This does not
change the behavior of stack overflow in Rust. This is still normally triggered
by the __morestack function and aborts the whole process.
C stack overflow will continue to corrupt the stack, however (as it did before
this commit as well). The future improvement of a guard page at the end of every
rust stack is still unimplemented and is intended to be the mechanism through
which we attempt to detect C stack overflow.
Closes#8822Closes#10155
This adds bindings to the remaining functions provided by libuv, all of which
are useful operations on files which need to get exposed somehow.
Some highlights:
* Dropped `FileReader` and `FileWriter` and `FileStream` for one `File` type
* Moved all file-related methods to be static methods under `File`
* All directory related methods are still top-level functions
* Created `io::FilePermission` types (backed by u32) that are what you'd expect
* Created `io::FileType` and refactored `FileStat` to use FileType and
FilePermission
* Removed the expanding matrix of `FileMode` operations. The mode of reading a
file will not have the O_CREAT flag, but a write mode will always have the
O_CREAT flag.
Closes#10130Closes#10131Closes#10121
This commit moves all thread-blocking I/O functions from the std::os module.
Their replacements can be found in either std::rt::io::file or in a hidden
"old_os" module inside of native::file. I didn't want to outright delete these
functions because they have a lot of special casing learned over time for each
OS/platform, and I imagine that these will someday get integrated into a
blocking implementation of IoFactory. For now, they're moved to a private module
to prevent bitrot and still have tests to ensure that they work.
I've also expanded the extensions to a few more methods defined on Path, most of
which were previously defined in std::os but now have non-thread-blocking
implementations as part of using the current IoFactory.
The api of io::file is in flux, but I plan on changing it in the next commit as
well.
Closes#10057
This lets the C++ code in the rt handle the (slightly) tricky parts of
random number generation: e.g. error detection/handling, and using the
values of the `#define`d options to the various functions.
The former reads from e.g. /dev/urandom, the latter just wraps any
std::rt::io::Reader into an interface that implements Rng.
This also adds Rng.fill_bytes for efficient implementations of the above
(reading 8 bytes at a time is inefficient when you can read 1000), and
removes the dependence on src/rt (i.e. rand_gen_seed) although this last
one requires implementing hand-seeding of the XorShiftRng used in the
scheduler on Linux/unixes, since OSRng relies on a scheduler existing to
be able to read from /dev/urandom.