Support vec zero-alloc optimization for tuples and byte arrays
* Implement IsZero trait for tuples up to 8 IsZero elements;
* Implement IsZero for u8/i8, leading to implementation of it for arrays of them too;
* Add more codegen tests for this optimization.
* Lower size of array for IsZero trait because it fails to inline checks
* Implement IsZero trait for tuples up to 8 IsZero elements;
* Implement IsZero for u8/i8, leading to implementation of it for arrays of them too;
* Add more codegen tests for this optimization.
* Lower size of array for IsZero trait because it fails to inline checks
The implementation of BufReader contains a lot of redundant checks.
While any one of these checks is not particularly expensive to execute,
especially when taken together they dramatically inhibit LLVM's ability
to make subsequent optimizations.
miri: prune some atomic operation and raw pointer details from stacktrace
Since Miri removes `track_caller` frames from the stacktrace, adding that attribute can help make backtraces more readable (similar to how it makes panic locations better). I made them only show up with `cfg(miri)` to make sure the extra arguments induced by `track_caller` do not cause any runtime performance trouble.
This is also testing the waters for whether the libs team is okay with having these attributes in their code, or whether you'd prefer if we find some other way to do this. If you are fine with this, we will probably want to add it to a lot more functions (all the other atomic operations, to start).
Before:
```
error: Undefined Behavior: Data race detected between Atomic Load on Thread(id = 2) and Write on Thread(id = 1) at alloc1727 (current vector clock = VClock([9, 0, 6]), conflicting timestamp = VClock([0, 6]))
--> /home/r/.rustup/toolchains/miri/lib/rustlib/src/rust/library/core/src/sync/atomic.rs:2594:23
|
2594 | SeqCst => intrinsics::atomic_load_seqcst(dst),
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Data race detected between Atomic Load on Thread(id = 2) and Write on Thread(id = 1) at alloc1727 (current vector clock = VClock([9, 0, 6]), conflicting timestamp = VClock([0, 6]))
|
= help: this indicates a bug in the program: it performed an invalid operation, and caused Undefined Behavior
= help: see https://doc.rust-lang.org/nightly/reference/behavior-considered-undefined.html for further information
= note: inside `std::sync::atomic::atomic_load::<usize>` at /home/r/.rustup/toolchains/miri/lib/rustlib/src/rust/library/core/src/sync/atomic.rs:2594:23
= note: inside `std::sync::atomic::AtomicUsize::load` at /home/r/.rustup/toolchains/miri/lib/rustlib/src/rust/library/core/src/sync/atomic.rs:1719:26
note: inside closure at ../miri/tests/fail/data_race/atomic_read_na_write_race1.rs:22:13
--> ../miri/tests/fail/data_race/atomic_read_na_write_race1.rs:22:13
|
22 | (&*c.0).load(Ordering::SeqCst)
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
```
After:
```
error: Undefined Behavior: Data race detected between Atomic Load on Thread(id = 2) and Write on Thread(id = 1) at alloc1727 (current vector clock = VClock([9, 0, 6]), conflicting timestamp = VClock([0, 6]))
--> tests/fail/data_race/atomic_read_na_write_race1.rs:22:13
|
22 | (&*c.0).load(Ordering::SeqCst)
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Data race detected between Atomic Load on Thread(id = 2) and Write on Thread(id = 1) at alloc1727 (current vector clock = VClock([9, 0, 6]), conflicting timestamp = VClock([0, 6]))
|
= help: this indicates a bug in the program: it performed an invalid operation, and caused Undefined Behavior
= help: see https://doc.rust-lang.org/nightly/reference/behavior-considered-undefined.html for further information
= note: inside closure at tests/fail/data_race/atomic_read_na_write_race1.rs:22:13
```
Lock stdout once when listing tests
This is a marginal optimization for normal operation, but for `cargo miri nextest list` (which is invoked by `cargo miri nextest run`) this knocks the startup time on `regex` down from 87 seconds to 17 seconds. Still slow, but a nice 5x improvement.
Add cgroupv1 support to available_parallelism
Fixes#97549
My dev machine uses cgroup v2 so I was only able to test that code path. So the v1 code path is written only based on documentation. I could use some help testing that it works on a machine with cgroups v1:
```
$ x.py build --stage 1
# quota.rs
fn main() {
println!("{:?}", std:🧵:available_parallelism());
}
# assuming stage1 is linked in rustup
$ rust +stage1 quota.rs
# spawn a new cgroup scope for the current user
$ sudo systemd-run -p CPUQuota="300%" --uid=$(id -u) -tdS
# should print Ok(3)
$ ./quota
```
If it doesn't work as expected an strace, the contents of `/proc/self/cgroups` and the structure of `/sys/fs/cgroups` would help.
Add `[f32]::sort_floats` and `[f64]::sort_floats`
It's inconvenient to sort a slice or Vec of floats, compared to sorting integers. To simplify numeric code, add a convenience method to `[f32]` and `[f64]` to sort them using `sort_unstable_by` with `total_cmp`.
Rename `<*{mut,const} T>::as_{const,mut}` to `cast_`
This renames the methods to use the `cast_` prefix instead of `as_` to
make it more readable and avoid confusion with `<*mut T>::as_mut()`
which is `unsafe` and returns a reference.
Sorry, didn't notice ACP process exists, opened https://github.com/rust-lang/libs-team/issues/51
See #92675
make vtable pointers entirely opaque
This implements the scheme discussed in https://github.com/rust-lang/unsafe-code-guidelines/issues/338: vtable pointers should be considered entirely opaque and not even readable by Rust code, similar to function pointers.
- We have a new kind of `GlobalAlloc` that symbolically refers to a vtable.
- Miri uses that kind of allocation when generating a vtable.
- The codegen backends, upon encountering such an allocation, call `vtable_allocation` to obtain an actually dataful allocation for this vtable.
- We need new intrinsics to obtain the size and align from a vtable (for some `ptr::metadata` APIs), since direct accesses are UB now.
I had to touch quite a bit of code that I am not very familiar with, so some of this might not make much sense...
r? `@oli-obk`
Fix the stable version of `AsFd for Arc<T>` and `Box<T>`
These merged in #97437 for 1.64.0, apart from the main `io_safety`
feature that stabilized in 1.63.0.
std: use futex-based locks on Fuchsia
This switches `Condvar` and `RwLock` to the futex-based implementation currently used on Linux and some BSDs. Additionally, `Mutex` now has its own, priority-inheriting implementation based on the mutex in Fuchsia's `libsync`. It differs from the original in that it panics instead of aborting when reentrant locking is detected.
````@rustbot```` ping fuchsia
r? ````@m-ou-se````
This renames the methods to use the `cast_` prefix instead of `as_` to
make it more readable and avoid confusion with `<*mut T>::as_mut()`
which is `unsafe` and returns a reference.
See #92675
stdlib support for Apple WatchOS
This is a follow-up to https://github.com/rust-lang/rust/pull/95243 (Add Apple WatchOS compiler targets) that adds stdlib support for Apple WatchOS.
`@deg4uss3r`
`@nagisa`