Remove CrateNum parameter for queries that only work on local crate
The pervasive `CrateNum` parameter is a remnant of the multi-crate rustc idea.
Using `()` as query key in those cases avoids having to worry about the validity of the query key.
CTFE validation: handle pointers in str
I also finally learned how I can match *some* NOTEs in a ui test without matching all of them, and applied that to some const tests in the 2nd commit where I added NOTE because I did not know what I was doing. I can separate this into its own PR if you prefer.
Fixes https://github.com/rust-lang/rust/issues/83182
r? `@oli-obk`
coverage bug fixes and some refactoring
This replaces the relevant commits (2 and 3) from PR #85082, and also corrects an error querying for coverageinfo.
1. `coverageinfo` query needs to use the same MIR as codegen
I ran into an error trying to fix dead block coverage and realized the
`coverageinfo` query is getting a different MIR compared to the
codegenned MIR, which can sometimes be a problem during mapgen.
I changed that query to use the `InstandeDef` (which includes the
generic parameter substitutions, prosibly specific to const params)
instead of the `DefId` (without unknown/default const substitutions).
2. Simplified body_span and filtered span code
Some code cleanup extracted from future (but unfinished) commit to fix
coverage in attr macro functions.
3. Spanview needs the relevant body_span used for coverage
The coverage body_span doesn't always match the function body_span.
r? ```@tmandry```
I ran into an error trying to fix dead block coverage and realized the
`coverageinfo` query is getting a different MIR compared to the
codegenned MIR, which can sometimes be a problem during mapgen.
I changed that query to use the `InstandeDef` (which includes the
generic parameter substitutions, prosibly specific to const params)
instead of the `DefId` (without unknown/default const substitutions).
Fix `--remap-path-prefix` not correctly remapping `rust-src` component paths and unify handling of path mapping with virtualized paths
This PR fixes#73167 ("Binaries end up containing path to the rust-src component despite `--remap-path-prefix`") by preventing real local filesystem paths from reaching compilation output if the path is supposed to be remapped.
`RealFileName::Named` introduced in #72767 is now renamed as `LocalPath`, because this variant wraps a (most likely) valid local filesystem path.
`RealFileName::Devirtualized` is renamed as `Remapped` to be used for remapped path from a real path via `--remap-path-prefix` argument, as well as real path inferred from a virtualized (during compiler bootstrapping) `/rustc/...` path. The `local_path` field is now an `Option<PathBuf>`, as it will be set to `None` before serialisation, so it never reaches any build output. Attempting to serialise a non-`None` `local_path` will cause an assertion faliure.
When a path is remapped, a `RealFileName::Remapped` variant is created. The original path is preserved in `local_path` field and the remapped path is saved in `virtual_name` field. Previously, the `local_path` is directly modified which goes against its purpose of "suitable for reading from the file system on the local host".
`rustc_span::SourceFile`'s fields `unmapped_path` (introduced by #44940) and `name_was_remapped` (introduced by #41508 when `--remap-path-prefix` feature originally added) are removed, as these two pieces of information can be inferred from the `name` field: if it's anything other than a `FileName::Real(_)`, or if it is a `FileName::Real(RealFileName::LocalPath(_))`, then clearly `name_was_remapped` would've been false and `unmapped_path` would've been `None`. If it is a `FileName::Real(RealFileName::Remapped{local_path, virtual_name})`, then `name_was_remapped` would've been true and `unmapped_path` would've been `Some(local_path)`.
cc `@eddyb` who implemented `/rustc/...` path devirtualisation
This PR implements span quoting, allowing proc-macros to produce spans
pointing *into their own crate*. This is used by the unstable
`proc_macro::quote!` macro, allowing us to get error messages like this:
```
error[E0412]: cannot find type `MissingType` in this scope
--> $DIR/auxiliary/span-from-proc-macro.rs:37:20
|
LL | pub fn error_from_attribute(_args: TokenStream, _input: TokenStream) -> TokenStream {
| ----------------------------------------------------------------------------------- in this expansion of procedural macro `#[error_from_attribute]`
...
LL | field: MissingType
| ^^^^^^^^^^^ not found in this scope
|
::: $DIR/span-from-proc-macro.rs:8:1
|
LL | #[error_from_attribute]
| ----------------------- in this macro invocation
```
Here, `MissingType` occurs inside the implementation of the proc-macro
`#[error_from_attribute]`. Previosuly, this would always result in a
span pointing at `#[error_from_attribute]`
This will make many proc-macro-related error message much more useful -
when a proc-macro generates code containing an error, users will get an
error message pointing directly at that code (within the macro
definition), instead of always getting a span pointing at the macro
invocation site.
This is implemented as follows:
* When a proc-macro crate is being *compiled*, it causes the `quote!`
macro to get run. This saves all of the sapns in the input to `quote!`
into the metadata of *the proc-macro-crate* (which we are currently
compiling). The `quote!` macro then expands to a call to
`proc_macro::Span::recover_proc_macro_span(id)`, where `id` is an
opaque identifier for the span in the crate metadata.
* When the same proc-macro crate is *run* (e.g. it is loaded from disk
and invoked by some consumer crate), the call to
`proc_macro::Span::recover_proc_macro_span` causes us to load the span
from the proc-macro crate's metadata. The proc-macro then produces a
`TokenStream` containing a `Span` pointing into the proc-macro crate
itself.
The recursive nature of 'quote!' can be difficult to understand at
first. The file `src/test/ui/proc-macro/quote-debug.stdout` shows
the output of the `quote!` macro, which should make this eaier to
understand.
This PR also supports custom quoting spans in custom quote macros (e.g.
the `quote` crate). All span quoting goes through the
`proc_macro::quote_span` method, which can be called by a custom quote
macro to perform span quoting. An example of this usage is provided in
`src/test/ui/proc-macro/auxiliary/custom-quote.rs`
Custom quoting currently has a few limitations:
In order to quote a span, we need to generate a call to
`proc_macro::Span::recover_proc_macro_span`. However, proc-macros
support renaming the `proc_macro` crate, so we can't simply hardcode
this path. Previously, the `quote_span` method used the path
`crate::Span` - however, this only works when it is called by the
builtin `quote!` macro in the same crate. To support being called from
arbitrary crates, we need access to the name of the `proc_macro` crate
to generate a path. This PR adds an additional argument to `quote_span`
to specify the name of the `proc_macro` crate. Howver, this feels kind
of hacky, and we may want to change this before stabilizing anything
quote-related.
Additionally, using `quote_span` currently requires enabling the
`proc_macro_internals` feature. The builtin `quote!` macro
has an `#[allow_internal_unstable]` attribute, but this won't work for
custom quote implementations. This will likely require some additional
tricks to apply `allow_internal_unstable` to the span of
`proc_macro::Span::recover_proc_macro_span`.
Add primary marker on codegen unit and generate main wrapper on primary codegen.
This is the codegen part of changes extracted from #84062.
This add a marker called `primary` on each codegen units, where exactly one codegen unit will be `primary = true` at a time. This specific codegen unit will take charge of generating `main` wrapper when `main` is imported from a foreign crate after the implementation of RFC 1260.
cc #28937
I'm not sure who should i ask for review for codegen changes, so feel free to reassign.
r? `@nagisa`
Report coverage `0` of dead blocks
Fixes: #84018
With `-Z instrument-coverage`, coverage reporting of dead blocks
(for example, blocks dropped because a conditional branch is dropped,
based on const evaluation) is now supported.
If `instrument-coverage` is enabled, `simplify::remove_dead_blocks()`
finds all dropped coverage `Statement`s and adds their `code_region`s as
`Unreachable` coverage `Statement`s to the `START_BLOCK`, so they are
still included in the coverage map.
Check out the resulting changes in the test coverage reports in this PR (in [commit 1](0b0d293c7c)).
r? `@tmandry`
cc: `@wesleywiser`
CTFE inbounds-error-messages tweak
* use CheckInAllocMsg::PointerArithmeticTest for ptr_offset error
* nicer errors for some null pointer cases
r? `@oli-obk`
Coverage instruments closure bodies in macros (not the macro body)
Fixes: #84884
This solution might be considered a compromise, but I think it is the
better choice.
The results in the `closure.rs` test correctly resolve all test cases
broken as described in #84884.
One test pattern (in both `closure_macro.rs` and
`closure_macro_async.rs`) was also affected, and removes coverage
statistics for the lines inside the closure, because the closure
includes a macro. (The coverage remains at the callsite of the macro, so
we lose some detail, but there isn't a perfect choice with macros.
Often macro implementations are split across the macro and the callsite,
and there doesn't appear to be a single "right choice" for which body
should be covered. For the current implementation, we can't do both.
The callsite is most likely to be the preferred site for coverage.
r? `@tmandry`
cc: `@wesleywiser`
Fixes: #84884
This solution might be considered a compromise, but I think it is the
better choice.
The results in the `closure.rs` test correctly resolve all test cases
broken as described in #84884.
One test pattern (in both `closure_macro.rs` and
`closure_macro_async.rs`) was also affected, and removes coverage
statistics for the lines inside the closure, because the closure
includes a macro. (The coverage remains at the callsite of the macro, so
we lose some detail, but there isn't a perfect choice with macros.
Often macro implementations are split across the macro and the callsite,
and there doesn't appear to be a single "right choice" for which body
should be covered. For the current implementation, we can't do both.
The callsite is most likely to be the preferred site for coverage.
I applied this fix to all `MacroKinds`, not just `Bang`.
I'm trying to resolve an issue of lost coverage in a
`MacroKind::Attr`-based, function-scoped macro. Instead of only
searching for a body_span that is "not a function-like macro" (that is,
MacroKind::Bang), I'm expanding this to all `MacroKind`s. Maybe I should
expand this to `ExpnKind::Desugaring` and `ExpnKind::AstPass` (or
subsets, depending on their sub-kinds) as well, but I'm not sure that's
a good idea.
I'd like to add a test of the `Attr` macro on functions, but I need time
to figure out how to constract a good, simple example without external
crate dependencies. For the moment, all tests still work as expected (no
change), this new commit shouldn't have a negative affect, and more
importantly, I believe it will have a positive effect. I will try to
confirm this.
Fixes: #84018
With `-Z instrument-coverage`, coverage reporting of dead blocks
(for example, blocks dropped because a conditional branch is dropped,
based on const evaluation) is now supported.
If `instrument-coverage` is enabled, `simplify::remove_dead_blocks()`
finds all dropped coverage `Statement`s and adds their `code_region`s as
`Unreachable` coverage `Statement`s to the `START_BLOCK`, so they are
still included in the coverage map.
Check out the resulting changes in the test coverage reports in this PR.
Vastly improves coverage spans for macros
Fixes: #84561
This resolves problems where macros like `trace!(...)` would show zero coverage if tracing was disabled, and `assert_eq!(...)` would show zero coverage if the assertion did not fail, because only one coverage span was generated, for the branch.
This PR started with an idea that I could just drop branching blocks with same span as expanded macro. (See the fixed issue for more details.)
That did help, but it didn't resolve everything.
I also needed to add a span specifically for the macro name (plus `!`) to ensure the macro gets coverage even if it's internal expansion adds conditional branching blocks that are retained, and would otherwise drop the outer span. Now that outer span is _only_ the `(argument, list)`, which can safely be dropped now), because the macro name has its own span.
While testing, I also noticed the spanview debug output can cause an ICE on a function with no body. The
workaround for this is included in this PR (separate commit).
r? `@tmandry`
cc? `@wesleywiser`
Implement RFC 1260 with feature_name `imported_main`.
This is the second extraction part of #84062 plus additional adjustments.
This (mostly) implements RFC 1260.
However there's still one test case failure in the extern crate case. Maybe `LocalDefId` doesn't work here? I'm not sure.
cc https://github.com/rust-lang/rust/issues/28937
r? `@petrochenkov`
use correct feature flag for impl-block-level trait bounds on const fn
I am not sure what that special hack was needed for, but it doesn't seem needed any more...
This removes the last use of the `const_fn` feature flag -- Cc https://github.com/rust-lang/rust/issues/84510
r? `@oli-obk`
Adds feature-gated `#[no_coverage]` function attribute, to fix derived Eq `0` coverage issue #83601
Derived Eq no longer shows uncovered
The Eq trait has a special hidden function. MIR `InstrumentCoverage`
would add this function to the coverage map, but it is never called, so
the `Eq` trait would always appear uncovered.
Fixes: #83601
The fix required creating a new function attribute `no_coverage` to mark
functions that should be ignored by `InstrumentCoverage` and the
coverage `mapgen` (during codegen).
Adding a `no_coverage` feature gate with tracking issue #84605.
r? `@tmandry`
cc: `@wesleywiser`
Improve coverage spans for chained function calls
Fixes: #84180
For chained function calls separated by the `?` try operator, the
function call following the try operator produced a MIR `Call` span that
matched the span of the first call. The `?` try operator started a new
span, so the second call got no span.
It turns out the MIR `Call` terminator has a `func` `Operand`
for the `Constant` representing the function name, and the function
name's Span can be used to reset the starting position of the span.
r? `@tmandry`
cc: `@wesleywiser`
The Eq trait has a special hidden function. MIR `InstrumentCoverage`
would add this function to the coverage map, but it is never called, so
the `Eq` trait would always appear uncovered.
Fixes: #83601
The fix required creating a new function attribute `no_coverage` to mark
functions that should be ignored by `InstrumentCoverage` and the
coverage `mapgen` (during codegen).
While testing, I also noticed two other issues:
* spanview debug file output ICEd on a function with no body. The
workaround for this is included in this PR.
* `assert_*!()` macro coverage can appear covered if followed by another
`assert_*!()` macro. Normally they appear uncovered. I submitted a new
Issue #84561, and added a coverage test to demonstrate this issue.
Fix coverage ICE because fn_sig can have a span that crosses file bou…
Fixes: #83792
MIR `InstrumentCoverage` assumed the `FnSig` span was contained within a
single file, but this is not always the case. Some macro constructions
can result in a span that starts in one `SourceFile` and ends in a
different one.
The `FnSig` span is included in coverage results as long as that span is
in the same `SourceFile` and the same macro context, but by assuming the
`FnSig` span's `hi()` and `lo()` were in the same file, I took this for
granted, and checked only that the `FnSig` `hi()` was in the same
`SourceFile` as the `body_span`.
I actually drop the `hi()` though, and extend the `FnSig` span to the
`body_span.lo()`, so I really should have simply checked that the
`FnSig` span's `lo()` was in the `SourceFile` of the `body_span`.
r? `@tmandry`
cc: `@wesleywiser`
Fixes: #84180
For chained function calls separated by the `?` try operator, the
function call following the try operator produced a MIR `Call` span that
matched the span of the first call. The `?` try operator started a new
span, so the second call got no span.
It turns out the MIR `Call` terminator has a `func` `Operand`
for the `Constant` representing the function name, and the function
name's Span can be used to reset the starting position of the span.
further split up const_fn feature flag
This continues the work on splitting up `const_fn` into separate feature flags:
* `const_fn_trait_bound` for `const fn` with trait bounds
* `const_fn_unsize` for unsizing coercions in `const fn` (looks like only `dyn` unsizing is still guarded here)
I don't know if there are even any things left that `const_fn` guards... at least libcore and liballoc do not need it any more.
`@oli-obk` are you currently able to do reviews?
Fixes: #83792
MIR `InstrumentCoverage` assumed the `FnSig` span was contained within a
single file, but this is not always the case. Some macro constructions
can result in a span that starts in one `SourceFile` and ends in a
different one.
The `FnSig` span is included in coverage results as long as that span is
in the same `SourceFile` and the same macro context, but by assuming the
`FnSig` span's `hi()` and `lo()` were in the same file, I took this for
granted, and checked only that the `FnSig` `hi()` was in the same
`SourceFile` as the `body_span`.
I actually drop the `hi()` though, and extend the `FnSig` span to the
`body_span.lo()`, so I really should have simply checked that the
`FnSig` span's `lo()` was in the `SourceFile` of the `body_span`.
Implement a lint that highlights all moves larger than a configured limit
Tracking issue: #83518
[MCP 420](https://github.com/rust-lang/compiler-team/issues/420) still ~blazing~ in progress
r? ```@pnkfelix```
The main open issue I see with this minimal impl of the feature is that the lint is immediately "stable" (so it can be named on stable), even if it is never executed on stable. I don't think we have the concept of unstable lint names or hiding lint names without an active feature gate, so that would be a bigger change.
Suggest `.as_ref()` on borrow error involving `Option`/`Result`
When encountering a E0382 borrow error involving an `Option` or `Result`
provide a suggestion to use `.as_ref()` on the prior move location to
avoid the move.
Fix#84165.
coverage of async function bodies should match non-async
This fixes some missing coverage within async function bodies.
Commit 1 demonstrates the problem in the fixed issue, and commit 2 corrects it.
Fixes: #83985
When encountering a E0382 borrow error involving an `Option` or `Result`
provide a suggestion to use `.as_ref()` on the prior move location to
avoid the move.
Fix#84165.
This message is emitted as guidance by the compiler when a developer attempts to reassign a value to an immutable variable. Following the message will always currently work, but it may not always be the best course of action; following the 'consider ...' messaging pattern provides a hint to the developer that it could be wise to explore other alternatives.
Don't concatenate binders across types
Partially addresses #83737
There's actually two issues that I uncovered in #83737. The first is that we are concatenating bound vars across types, i.e. in
```
F: Fn(&()) -> &mut (dyn Future<Output = ()> + Unpin)
```
the bound vars on `Future` get set as `for<anon>` since those are the binders on `Fn(&()`. This is obviously wrong, since we should only concatenate directly nested trait refs. This is solved here by introducing a new `TraitRefBoundary` scope, that we put around the "syntactical" trait refs and basically don't allow concatenation across.
Now, this alone *shouldn't* be a super terrible problem. At least not until you consider the other issue, which is a much more elusive and harder to design a "perfect" fix. A repro can be seen in:
```
use core::future::Future;
async fn handle<F>(slf: &F)
where
F: Fn(&()) -> &mut (dyn for<'a> Future<Output = ()> + Unpin),
{
(slf)(&()).await;
}
```
Notice the `for<'a>` around `Future`. Here, `'a` is unused, so the `for<'a>` Binder gets changed to a `for<>` Binder in the generator witness, but the "local decl" still has it. This has heavy intersections with region anonymization and erasing. Luckily, it's not *super* common to find this unique set of circumstances. It only became apparently because of the first issue mentioned here. However, this *is* still a problem, so I'm leaving #83737 open.
r? `@nikomatsakis`
Use AnonConst for asm! constants
This replaces the old system which used explicit promotion. See #83169 for more background.
The syntax for `const` operands is still the same as before: `const <expr>`.
Fixes#83169
Because the implementation is heavily based on inline consts, we suffer from the same issues:
- We lose the ability to use expressions derived from generics. See the deleted tests in `src/test/ui/asm/const.rs`.
- We are hitting the same ICEs as inline consts, for example #78174. It is unlikely that we will be able to stabilize this before inline consts are stabilized.